{"title":"基于随机优势的指数跟踪投资组合建模","authors":"Liang-Chuan Wu, Yuju Wang, Liang-Hong Wu","doi":"10.1080/0013791X.2022.2047851","DOIUrl":null,"url":null,"abstract":"Abstract We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers’ returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.","PeriodicalId":49210,"journal":{"name":"Engineering Economist","volume":"67 1","pages":"172 - 194"},"PeriodicalIF":1.0000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling index tracking portfolio based on stochastic dominance for stock selection\",\"authors\":\"Liang-Chuan Wu, Yuju Wang, Liang-Hong Wu\",\"doi\":\"10.1080/0013791X.2022.2047851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers’ returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.\",\"PeriodicalId\":49210,\"journal\":{\"name\":\"Engineering Economist\",\"volume\":\"67 1\",\"pages\":\"172 - 194\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Economist\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/0013791X.2022.2047851\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Economist","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/0013791X.2022.2047851","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
Modeling index tracking portfolio based on stochastic dominance for stock selection
Abstract We propose a three-step method using the stochastic dominance (SD) approach on stock filtering to determine the number and candidate stocks in a portfolio. We empirically prove that our model can be used to efficiently construct a partial tracking portfolio and replicate the return of the index. First, the low standard deviation feature is found in the proposed portfolio using SD for the risk avoider. Second, our model generates constituents for a portfolio and fills the gap in the index tracking strategy. Third, the portfolios chosen from the SD-based model outperform the FTSE index and traditional index trackers’ returns. Artificial intelligence algorithms of weighting constituents can be examined in future research.
Engineering EconomistENGINEERING, INDUSTRIAL-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
2.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍:
The Engineering Economist is a refereed journal published jointly by the Engineering Economy Division of the American Society of Engineering Education (ASEE) and the Institute of Industrial and Systems Engineers (IISE). The journal publishes articles, case studies, surveys, and book and software reviews that represent original research, current practice, and teaching involving problems of capital investment.
The journal seeks submissions in a number of areas, including, but not limited to: capital investment analysis, financial risk management, cost estimation and accounting, cost of capital, design economics, economic decision analysis, engineering economy education, research and development, and the analysis of public policy when it is relevant to the economic investment decisions made by engineers and technology managers.