{"title":"一个关于核密度估计和最新进展的教程","authors":"Yen-Chi Chen","doi":"10.1080/24709360.2017.1396742","DOIUrl":null,"url":null,"abstract":"ABSTRACT This tutorial provides a gentle introduction to kernel density estimation (KDE) and recent advances regarding confidence bands and geometric/topological features. We begin with a discussion of basic properties of KDE: the convergence rate under various metrics, density derivative estimation, and bandwidth selection. Then, we introduce common approaches to the construction of confidence intervals/bands, and we discuss how to handle bias. Next, we talk about recent advances in the inference of geometric and topological features of a density function using KDE. Finally, we illustrate how one can use KDE to estimate a cumulative distribution function and a receiver operating characteristic curve. We provide R implementations related to this tutorial at the end.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"1 1","pages":"161 - 187"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2017.1396742","citationCount":"281","resultStr":"{\"title\":\"A tutorial on kernel density estimation and recent advances\",\"authors\":\"Yen-Chi Chen\",\"doi\":\"10.1080/24709360.2017.1396742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This tutorial provides a gentle introduction to kernel density estimation (KDE) and recent advances regarding confidence bands and geometric/topological features. We begin with a discussion of basic properties of KDE: the convergence rate under various metrics, density derivative estimation, and bandwidth selection. Then, we introduce common approaches to the construction of confidence intervals/bands, and we discuss how to handle bias. Next, we talk about recent advances in the inference of geometric and topological features of a density function using KDE. Finally, we illustrate how one can use KDE to estimate a cumulative distribution function and a receiver operating characteristic curve. We provide R implementations related to this tutorial at the end.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"1 1\",\"pages\":\"161 - 187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2017.1396742\",\"citationCount\":\"281\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2017.1396742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2017.1396742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
A tutorial on kernel density estimation and recent advances
ABSTRACT This tutorial provides a gentle introduction to kernel density estimation (KDE) and recent advances regarding confidence bands and geometric/topological features. We begin with a discussion of basic properties of KDE: the convergence rate under various metrics, density derivative estimation, and bandwidth selection. Then, we introduce common approaches to the construction of confidence intervals/bands, and we discuss how to handle bias. Next, we talk about recent advances in the inference of geometric and topological features of a density function using KDE. Finally, we illustrate how one can use KDE to estimate a cumulative distribution function and a receiver operating characteristic curve. We provide R implementations related to this tutorial at the end.