{"title":"基于幅频响应反馈环的半导体激光器扫频线性化","authors":"J. Zhu, Ligong Chen","doi":"10.4236/opj.2021.118017","DOIUrl":null,"url":null,"abstract":"A scheme of frequency sweep linearization of semiconductor lasers using a feed-back loop based on amplitude-frequency response is demonstrated in this paper. The beat frequency signal is obtained by self-heterodyne detection. The frequency changes are converted to the envelope of beat frequency signal after amplitude-frequency response. The active frequency sweep linearization is realized by feeding envelope deviations back to the drive currents of the lasers by a feedback loop. A simulation model is built to verify this scheme by Simulink. This scheme does not need high-performance, expensive lasers, complex linearization or tedious post-processing processes, which are of great significance for related applications.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequency Sweep Linearization for Semiconductor Laser Using a Feedback Loop Based on Amplitude-Frequency Response\",\"authors\":\"J. Zhu, Ligong Chen\",\"doi\":\"10.4236/opj.2021.118017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scheme of frequency sweep linearization of semiconductor lasers using a feed-back loop based on amplitude-frequency response is demonstrated in this paper. The beat frequency signal is obtained by self-heterodyne detection. The frequency changes are converted to the envelope of beat frequency signal after amplitude-frequency response. The active frequency sweep linearization is realized by feeding envelope deviations back to the drive currents of the lasers by a feedback loop. A simulation model is built to verify this scheme by Simulink. This scheme does not need high-performance, expensive lasers, complex linearization or tedious post-processing processes, which are of great significance for related applications.\",\"PeriodicalId\":64491,\"journal\":{\"name\":\"光学与光子学期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光学与光子学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/opj.2021.118017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/opj.2021.118017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frequency Sweep Linearization for Semiconductor Laser Using a Feedback Loop Based on Amplitude-Frequency Response
A scheme of frequency sweep linearization of semiconductor lasers using a feed-back loop based on amplitude-frequency response is demonstrated in this paper. The beat frequency signal is obtained by self-heterodyne detection. The frequency changes are converted to the envelope of beat frequency signal after amplitude-frequency response. The active frequency sweep linearization is realized by feeding envelope deviations back to the drive currents of the lasers by a feedback loop. A simulation model is built to verify this scheme by Simulink. This scheme does not need high-performance, expensive lasers, complex linearization or tedious post-processing processes, which are of great significance for related applications.