{"title":"考虑部件和系统老化的不可维修系统生命周期成本模型","authors":"Kah How Teo, K. Tai, V. Schena, L. Simonini","doi":"10.1108/ijqrm-03-2021-0073","DOIUrl":null,"url":null,"abstract":"PurposeThis study presents a lifecycle cost model considering multi-level burn-in for operationally unrepairable systems including assembly and warranty costs. A numerical method to obtain system reliability under component replacement during burn-in is also presented with derived error bounds.Design/methodology/approachThe final system reliability after component and system burn-in is obtained and warranty costs are computed. On failure during operation, the system is replaced with another that undergoes an identical burn-in procedure. Cost behaviours for a small and large system are shown in a numerical example.FindingsThere are more cost savings when system burn-in is conducted for a large system whereas a strategy focusing on component burn-in only can also result in cost savings for small systems. In addition, a minimum system burn-in duration is required before cost savings are achieved for these operationally unrepairable systems.Originality/valueThe operationally unrepairable system is a niche class of systems which small satellites fall under and no such study has been conducted before. The authors present a different approach towards the testing of small satellites for a constellation mission.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lifecycle cost model considering both component and system burn-in for operationally unrepairable systems\",\"authors\":\"Kah How Teo, K. Tai, V. Schena, L. Simonini\",\"doi\":\"10.1108/ijqrm-03-2021-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study presents a lifecycle cost model considering multi-level burn-in for operationally unrepairable systems including assembly and warranty costs. A numerical method to obtain system reliability under component replacement during burn-in is also presented with derived error bounds.Design/methodology/approachThe final system reliability after component and system burn-in is obtained and warranty costs are computed. On failure during operation, the system is replaced with another that undergoes an identical burn-in procedure. Cost behaviours for a small and large system are shown in a numerical example.FindingsThere are more cost savings when system burn-in is conducted for a large system whereas a strategy focusing on component burn-in only can also result in cost savings for small systems. In addition, a minimum system burn-in duration is required before cost savings are achieved for these operationally unrepairable systems.Originality/valueThe operationally unrepairable system is a niche class of systems which small satellites fall under and no such study has been conducted before. The authors present a different approach towards the testing of small satellites for a constellation mission.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-03-2021-0073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-03-2021-0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
A lifecycle cost model considering both component and system burn-in for operationally unrepairable systems
PurposeThis study presents a lifecycle cost model considering multi-level burn-in for operationally unrepairable systems including assembly and warranty costs. A numerical method to obtain system reliability under component replacement during burn-in is also presented with derived error bounds.Design/methodology/approachThe final system reliability after component and system burn-in is obtained and warranty costs are computed. On failure during operation, the system is replaced with another that undergoes an identical burn-in procedure. Cost behaviours for a small and large system are shown in a numerical example.FindingsThere are more cost savings when system burn-in is conducted for a large system whereas a strategy focusing on component burn-in only can also result in cost savings for small systems. In addition, a minimum system burn-in duration is required before cost savings are achieved for these operationally unrepairable systems.Originality/valueThe operationally unrepairable system is a niche class of systems which small satellites fall under and no such study has been conducted before. The authors present a different approach towards the testing of small satellites for a constellation mission.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining