Sisi Huang, Anding Zhu, Yan Wang, Yancong Xu, Lu Li, Dexing Kong
{"title":"疑似密切接触者作为新冠肺炎大流行期间确诊人口增长趋势的试点指标:一种模拟方法","authors":"Sisi Huang, Anding Zhu, Yan Wang, Yancong Xu, Lu Li, Dexing Kong","doi":"10.1097/IM9.0000000000000026","DOIUrl":null,"url":null,"abstract":"Abstract Background: Regarding to the actual situation of the new coronavirus disease 2019 epidemic, social factors should be taken into account and the increasing growth trend of confirmed populations needs to be explained. A proper model needs to be established, not only to simulate the epidemic, but also to evaluate the future epidemic situation and find a pilot indicator for the outbreak. Methods: The original susceptible-infectious-recover model is modified into the susceptible-infectious-quarantine-confirm-recover combined with social factors (SIDCRL) model, which combines the natural transmission with social factors such as external interventions and isolation. The numerical simulation method is used to imitate the change curve of the cumulative number of the confirmed cases and the number of cured patients. Furthermore, we investigate the relationship between the suspected close contacts (SCC) and the final outcome of the growth trend of confirmed cases with a simulation approach. Results: This article selects four representative countries, that is, China, South Korea, Italy, and the United States, and gives separate numerical simulations. The simulation results of the model fit the actual situation of the epidemic development and reasonable predictions are made. In addition, it is analyzed that the increasing number of SCC contributes to the epidemic outbreak and the prediction of the United States based on the population of the SCC highlights the importance of external intervention and active prevention measures. Conclusions: The simulation of the model verifies its reliability and stresses that observable variable SCC can be taken as a pilot indicator of the coronavirus disease 2019 pandemic.","PeriodicalId":73374,"journal":{"name":"Infectious microbes & diseases","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1097/IM9.0000000000000026","citationCount":"0","resultStr":"{\"title\":\"Suspected Close Contacts as the Pilot Indicator of the Growth Trend of Confirmed Population During the COVID-19 Pandemic: A Simulation Approach\",\"authors\":\"Sisi Huang, Anding Zhu, Yan Wang, Yancong Xu, Lu Li, Dexing Kong\",\"doi\":\"10.1097/IM9.0000000000000026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background: Regarding to the actual situation of the new coronavirus disease 2019 epidemic, social factors should be taken into account and the increasing growth trend of confirmed populations needs to be explained. A proper model needs to be established, not only to simulate the epidemic, but also to evaluate the future epidemic situation and find a pilot indicator for the outbreak. Methods: The original susceptible-infectious-recover model is modified into the susceptible-infectious-quarantine-confirm-recover combined with social factors (SIDCRL) model, which combines the natural transmission with social factors such as external interventions and isolation. The numerical simulation method is used to imitate the change curve of the cumulative number of the confirmed cases and the number of cured patients. Furthermore, we investigate the relationship between the suspected close contacts (SCC) and the final outcome of the growth trend of confirmed cases with a simulation approach. Results: This article selects four representative countries, that is, China, South Korea, Italy, and the United States, and gives separate numerical simulations. The simulation results of the model fit the actual situation of the epidemic development and reasonable predictions are made. In addition, it is analyzed that the increasing number of SCC contributes to the epidemic outbreak and the prediction of the United States based on the population of the SCC highlights the importance of external intervention and active prevention measures. Conclusions: The simulation of the model verifies its reliability and stresses that observable variable SCC can be taken as a pilot indicator of the coronavirus disease 2019 pandemic.\",\"PeriodicalId\":73374,\"journal\":{\"name\":\"Infectious microbes & diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1097/IM9.0000000000000026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious microbes & diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/IM9.0000000000000026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious microbes & diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/IM9.0000000000000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Suspected Close Contacts as the Pilot Indicator of the Growth Trend of Confirmed Population During the COVID-19 Pandemic: A Simulation Approach
Abstract Background: Regarding to the actual situation of the new coronavirus disease 2019 epidemic, social factors should be taken into account and the increasing growth trend of confirmed populations needs to be explained. A proper model needs to be established, not only to simulate the epidemic, but also to evaluate the future epidemic situation and find a pilot indicator for the outbreak. Methods: The original susceptible-infectious-recover model is modified into the susceptible-infectious-quarantine-confirm-recover combined with social factors (SIDCRL) model, which combines the natural transmission with social factors such as external interventions and isolation. The numerical simulation method is used to imitate the change curve of the cumulative number of the confirmed cases and the number of cured patients. Furthermore, we investigate the relationship between the suspected close contacts (SCC) and the final outcome of the growth trend of confirmed cases with a simulation approach. Results: This article selects four representative countries, that is, China, South Korea, Italy, and the United States, and gives separate numerical simulations. The simulation results of the model fit the actual situation of the epidemic development and reasonable predictions are made. In addition, it is analyzed that the increasing number of SCC contributes to the epidemic outbreak and the prediction of the United States based on the population of the SCC highlights the importance of external intervention and active prevention measures. Conclusions: The simulation of the model verifies its reliability and stresses that observable variable SCC can be taken as a pilot indicator of the coronavirus disease 2019 pandemic.