非等分散计数数据的灵活模型:处理欠分散的参数模型的比较性能

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-02-03 DOI:10.1007/s10182-021-00432-6
Douglas Toledo, Cristiane Akemi Umetsu, Antonio Fernando Monteiro Camargo, Idemauro Antonio Rodrigues de Lara
{"title":"非等分散计数数据的灵活模型:处理欠分散的参数模型的比较性能","authors":"Douglas Toledo,&nbsp;Cristiane Akemi Umetsu,&nbsp;Antonio Fernando Monteiro Camargo,&nbsp;Idemauro Antonio Rodrigues de Lara","doi":"10.1007/s10182-021-00432-6","DOIUrl":null,"url":null,"abstract":"<div><p>Count data as response variables are commonly modeled using Poisson regression models, which require equidispersion, i.e., equal mean and variance. However, this relationship does not always occur, and the variance may be higher or lower than the mean, phenomena are known as overdispersion and underdispersion, respectively. Non-equidispersion, when disregarded, can lead to a number of misinterpretations and inadequate predictions. Here, we compare the use of the COM-Poisson, double Poisson, Gamma-count, and restricted generalized Poisson models as a more flexible class for count problems associated with over- and underdispersion, since they have an additional parameter that allows more flexible analysis. The proposed method is useful in different applications, but here we provide an example using an underdispersed dataset concerning ecological invasion. For validation of the models, we use half-normal plots. The COM-Poisson, double Poisson, and Gamma-count performed best and properly modeled the underdispersion. The use of correct statistical models is recommended to handle this data property using objective criteria to ensure accurate statistical inferences.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-021-00432-6.pdf","citationCount":"3","resultStr":"{\"title\":\"Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion\",\"authors\":\"Douglas Toledo,&nbsp;Cristiane Akemi Umetsu,&nbsp;Antonio Fernando Monteiro Camargo,&nbsp;Idemauro Antonio Rodrigues de Lara\",\"doi\":\"10.1007/s10182-021-00432-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Count data as response variables are commonly modeled using Poisson regression models, which require equidispersion, i.e., equal mean and variance. However, this relationship does not always occur, and the variance may be higher or lower than the mean, phenomena are known as overdispersion and underdispersion, respectively. Non-equidispersion, when disregarded, can lead to a number of misinterpretations and inadequate predictions. Here, we compare the use of the COM-Poisson, double Poisson, Gamma-count, and restricted generalized Poisson models as a more flexible class for count problems associated with over- and underdispersion, since they have an additional parameter that allows more flexible analysis. The proposed method is useful in different applications, but here we provide an example using an underdispersed dataset concerning ecological invasion. For validation of the models, we use half-normal plots. The COM-Poisson, double Poisson, and Gamma-count performed best and properly modeled the underdispersion. The use of correct statistical models is recommended to handle this data property using objective criteria to ensure accurate statistical inferences.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10182-021-00432-6.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-021-00432-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-021-00432-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

作为响应变量的计数数据通常使用泊松回归模型建模,泊松回归模型要求等离散性,即均值和方差相等。然而,这种关系并不总是发生,方差可能高于或低于平均值,这种现象分别被称为过分散和欠分散。如果忽视非等分散,可能导致许多误解和不充分的预测。在这里,我们比较了com -泊松、双泊松、伽玛计数和受限广义泊松模型的使用,作为与过色散和欠色散相关的计数问题的更灵活的一类,因为它们有一个额外的参数,允许更灵活的分析。所提出的方法在不同的应用中都是有用的,但在这里我们提供了一个关于生态入侵的欠分散数据集的例子。为了验证模型,我们使用半正态图。com -泊松、双泊松和γ -计数表现最好,能很好地模拟欠色散。建议使用正确的统计模型来使用客观标准处理此数据属性,以确保准确的统计推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion

Count data as response variables are commonly modeled using Poisson regression models, which require equidispersion, i.e., equal mean and variance. However, this relationship does not always occur, and the variance may be higher or lower than the mean, phenomena are known as overdispersion and underdispersion, respectively. Non-equidispersion, when disregarded, can lead to a number of misinterpretations and inadequate predictions. Here, we compare the use of the COM-Poisson, double Poisson, Gamma-count, and restricted generalized Poisson models as a more flexible class for count problems associated with over- and underdispersion, since they have an additional parameter that allows more flexible analysis. The proposed method is useful in different applications, but here we provide an example using an underdispersed dataset concerning ecological invasion. For validation of the models, we use half-normal plots. The COM-Poisson, double Poisson, and Gamma-count performed best and properly modeled the underdispersion. The use of correct statistical models is recommended to handle this data property using objective criteria to ensure accurate statistical inferences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1