基于分布回归的航天器定轨方法

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Open Astronomy Pub Date : 2021-01-01 DOI:10.1515/astro-2021-0021
Chunsheng Jiang
{"title":"基于分布回归的航天器定轨方法","authors":"Chunsheng Jiang","doi":"10.1515/astro-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract A new method of orbit determination (OD) is proposed: distribution regression. The paper focuses on the process of using sparse observation data to determine the orbit of the spacecraft without any prior information. The standard regression process is to learn a map from real numbers to real numbers, but the approach put forward in this paper is to map from probability distributions to real-valued responses. According to the new algorithm, the number of orbital elements can be predicted by embedding the probability distribution into the reproducing kernel Hilbert space. While making full use of the edge of big data, it also avoids the problem that the algorithm cannot converge due to improper initial values in precise OD. The simulation experiment proves the effectiveness, robustness, and rapidity of the algorithm in the presence of noise in the measurement data.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":"30 1","pages":"159 - 167"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An orbit determination method of spacecraft based on distribution regression\",\"authors\":\"Chunsheng Jiang\",\"doi\":\"10.1515/astro-2021-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new method of orbit determination (OD) is proposed: distribution regression. The paper focuses on the process of using sparse observation data to determine the orbit of the spacecraft without any prior information. The standard regression process is to learn a map from real numbers to real numbers, but the approach put forward in this paper is to map from probability distributions to real-valued responses. According to the new algorithm, the number of orbital elements can be predicted by embedding the probability distribution into the reproducing kernel Hilbert space. While making full use of the edge of big data, it also avoids the problem that the algorithm cannot converge due to improper initial values in precise OD. The simulation experiment proves the effectiveness, robustness, and rapidity of the algorithm in the presence of noise in the measurement data.\",\"PeriodicalId\":19514,\"journal\":{\"name\":\"Open Astronomy\",\"volume\":\"30 1\",\"pages\":\"159 - 167\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/astro-2021-0021\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2021-0021","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要提出了一种新的定轨方法:分布回归法。本文重点介绍了在没有任何先验信息的情况下,利用稀疏观测数据确定航天器轨道的过程。标准的回归过程是学习从实数到实数的映射,但本文提出的方法是从概率分布到实数响应的映射。根据新算法,可以通过将概率分布嵌入再现核希尔伯特空间来预测轨道元素的数量。在充分利用大数据边缘的同时,也避免了算法在精确OD中由于初始值不合适而无法收敛的问题。仿真实验证明了该算法在测量数据中存在噪声的情况下的有效性、鲁棒性和快速性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An orbit determination method of spacecraft based on distribution regression
Abstract A new method of orbit determination (OD) is proposed: distribution regression. The paper focuses on the process of using sparse observation data to determine the orbit of the spacecraft without any prior information. The standard regression process is to learn a map from real numbers to real numbers, but the approach put forward in this paper is to map from probability distributions to real-valued responses. According to the new algorithm, the number of orbital elements can be predicted by embedding the probability distribution into the reproducing kernel Hilbert space. While making full use of the edge of big data, it also avoids the problem that the algorithm cannot converge due to improper initial values in precise OD. The simulation experiment proves the effectiveness, robustness, and rapidity of the algorithm in the presence of noise in the measurement data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Astronomy
Open Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍: The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.
期刊最新文献
A novel autonomous navigation constellation in the Earth–Moon system Asteroids discovered in the Baldone Observatory between 2017 and 2022: The orbits of asteroid 428694 Saule and 330836 Orius Intelligent collision avoidance strategy for all-electric propulsion GEO satellite orbit transfer control Stability of granular media impacts morphological characteristics under different impact conditions Parallel observations process of Tianwen-1 orbit determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1