当归补血汤多靶点多组分造血机制:代谢组学与数据库挖掘技术的结合

Defu Tie, Zhaohui Fan, Dan Chen, Xiao Chen, Qizhu Chen, Jun Chen, Huaben Bo
{"title":"当归补血汤多靶点多组分造血机制:代谢组学与数据库挖掘技术的结合","authors":"Defu Tie, Zhaohui Fan, Dan Chen, Xiao Chen, Qizhu Chen, Jun Chen, Huaben Bo","doi":"10.1142/S0192415X22500471","DOIUrl":null,"url":null,"abstract":"This study aimed to explore the mechanism of action of Danggui Buxue Tang (DBT) with its multiple components and targets in the synergistic regulation of hematopoiesis. Mouse models of hematopoiesis were established using antibiotics. Metabolomics was used to detect body metabolites and enriched pathways. The active ingredients, targets, and pathways of DBT were analyzed using system pharmacology. The results of metabolomics and system pharmacology were integrated to identify the key pathways and targets. A total of 515 metabolites were identified using metabolomics. After the action of antibiotics, 49 metabolites were markedly changed: 23 were increased, 26 were decreased, and 11 were significantly reversed after DBT administration. Pathway enrichment analysis showed that these 11 metabolites were related to bile secretion, cofactor biosynthesis, and fatty acid biosynthesis. The results of the pharmacological analysis showed that 616 targets were related to DBT-induced anemia, which were mainly enriched in biological processes, such as bile secretion, biosynthesis of cofactors, and cholesterol metabolism. Combined with the results of metabolomics and system pharmacology, we found that bile acid metabolism and biotin synthesis were the key pathways for DBT. Forty-two targets of DBT were related to these two metabolic pathways. PPI analysis revealed that the top 10 targets were CYP3A4, ABCG2, and UGT1A8. Twenty-one components interacted with these 10 targets. In one case, a target corresponds to multiple components, and a component corresponds to multiple targets. DBT acts on multiple targets of ABCG2, UGT1A8, and CYP3A4 through multiple components, affecting the biosynthesis of cofactors and bile secretion pathways to regulate hematopoiesis.","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanisms of Danggui Buxue Tang on Hematopoiesis via Multiple Targets and Multiple Components: Metabonomics Combined with Database Mining Technology.\",\"authors\":\"Defu Tie, Zhaohui Fan, Dan Chen, Xiao Chen, Qizhu Chen, Jun Chen, Huaben Bo\",\"doi\":\"10.1142/S0192415X22500471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to explore the mechanism of action of Danggui Buxue Tang (DBT) with its multiple components and targets in the synergistic regulation of hematopoiesis. Mouse models of hematopoiesis were established using antibiotics. Metabolomics was used to detect body metabolites and enriched pathways. The active ingredients, targets, and pathways of DBT were analyzed using system pharmacology. The results of metabolomics and system pharmacology were integrated to identify the key pathways and targets. A total of 515 metabolites were identified using metabolomics. After the action of antibiotics, 49 metabolites were markedly changed: 23 were increased, 26 were decreased, and 11 were significantly reversed after DBT administration. Pathway enrichment analysis showed that these 11 metabolites were related to bile secretion, cofactor biosynthesis, and fatty acid biosynthesis. The results of the pharmacological analysis showed that 616 targets were related to DBT-induced anemia, which were mainly enriched in biological processes, such as bile secretion, biosynthesis of cofactors, and cholesterol metabolism. Combined with the results of metabolomics and system pharmacology, we found that bile acid metabolism and biotin synthesis were the key pathways for DBT. Forty-two targets of DBT were related to these two metabolic pathways. PPI analysis revealed that the top 10 targets were CYP3A4, ABCG2, and UGT1A8. Twenty-one components interacted with these 10 targets. In one case, a target corresponds to multiple components, and a component corresponds to multiple targets. DBT acts on multiple targets of ABCG2, UGT1A8, and CYP3A4 through multiple components, affecting the biosynthesis of cofactors and bile secretion pathways to regulate hematopoiesis.\",\"PeriodicalId\":94221,\"journal\":{\"name\":\"The American journal of Chinese medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American journal of Chinese medicine\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X22500471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1142/S0192415X22500471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在探讨当归补血汤多组分、多靶点协同调节造血的作用机制。采用抗生素建立小鼠造血模型。代谢组学用于检测机体代谢物和富集途径。采用系统药理学方法分析了DBT的有效成分、靶点和作用途径。结合代谢组学和系统药理学的结果,确定了关键的通路和靶点。利用代谢组学共鉴定出515种代谢物。抗生素作用后,49种代谢物发生显著变化:DBT治疗后,23种代谢物增加,26种代谢物减少,11种代谢物明显逆转。途径富集分析表明,这11种代谢物与胆汁分泌、辅因子生物合成和脂肪酸生物合成有关。药理分析结果显示,616个靶点与dbt诱导的贫血有关,主要富集于胆汁分泌、辅因子生物合成、胆固醇代谢等生物过程中。结合代谢组学和系统药理学结果,我们发现胆汁酸代谢和生物素合成是DBT的关键途径。42个DBT靶点与这两种代谢途径有关。PPI分析显示,前10位靶点为CYP3A4、ABCG2和UGT1A8。21个组件与这10个目标相互作用。在一种情况下,一个目标对应多个组件,一个组件对应多个目标。DBT通过多组分作用于ABCG2、UGT1A8、CYP3A4等多个靶点,影响辅因子的生物合成和胆汁分泌途径,调节造血功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms of Danggui Buxue Tang on Hematopoiesis via Multiple Targets and Multiple Components: Metabonomics Combined with Database Mining Technology.
This study aimed to explore the mechanism of action of Danggui Buxue Tang (DBT) with its multiple components and targets in the synergistic regulation of hematopoiesis. Mouse models of hematopoiesis were established using antibiotics. Metabolomics was used to detect body metabolites and enriched pathways. The active ingredients, targets, and pathways of DBT were analyzed using system pharmacology. The results of metabolomics and system pharmacology were integrated to identify the key pathways and targets. A total of 515 metabolites were identified using metabolomics. After the action of antibiotics, 49 metabolites were markedly changed: 23 were increased, 26 were decreased, and 11 were significantly reversed after DBT administration. Pathway enrichment analysis showed that these 11 metabolites were related to bile secretion, cofactor biosynthesis, and fatty acid biosynthesis. The results of the pharmacological analysis showed that 616 targets were related to DBT-induced anemia, which were mainly enriched in biological processes, such as bile secretion, biosynthesis of cofactors, and cholesterol metabolism. Combined with the results of metabolomics and system pharmacology, we found that bile acid metabolism and biotin synthesis were the key pathways for DBT. Forty-two targets of DBT were related to these two metabolic pathways. PPI analysis revealed that the top 10 targets were CYP3A4, ABCG2, and UGT1A8. Twenty-one components interacted with these 10 targets. In one case, a target corresponds to multiple components, and a component corresponds to multiple targets. DBT acts on multiple targets of ABCG2, UGT1A8, and CYP3A4 through multiple components, affecting the biosynthesis of cofactors and bile secretion pathways to regulate hematopoiesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on the Chemical Constituents, Pharmacological Activities, and Clinical Application of Taxus. Acupuncture: An Overview on Its Functions, Meridian Pathways and Molecular Mechanisms. Chinese Medicine-Derived Salvianolic Acid B for Disease Therapy: A Scientometric Study. Atractylodin: An Alkyne Compound with Anticancer Potential. Ginsenoside Rg2 Attenuates Aging-Induced Liver Injury via Inhibiting Caspase 8-Mediated Pyroptosis, Apoptosis and Modulating Gut Microbiota.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1