超复合物超复合物:Raison d’etre和超分子组织在氧化磷酸化中的功能意义

Q2 Biochemistry, Genetics and Molecular Biology Biomolecular Concepts Pub Date : 2022-01-01 DOI:10.1515/bmc-2022-0021
S. Nath
{"title":"超复合物超复合物:Raison d’etre和超分子组织在氧化磷酸化中的功能意义","authors":"S. Nath","doi":"10.1515/bmc-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract Following structural determination by recent advances in electron cryomicroscopy, it is now well established that the respiratory Complexes I–IV in oxidative phosphorylation (OXPHOS) are organized into supercomplexes in the respirasome. Nonetheless, the reason for the existence of the OXPHOS supercomplexes and their functional role remains an enigma. Several hypotheses have been proposed for the existence of these supercomplex supercomplexes. A commonly-held view asserts that they enhance catalysis by substrate channeling. However, this – and other views – has been challenged based on structural and biophysical information. Hence, new ideas, concepts, and frameworks are needed. Here, a new model of energy transfer in OXPHOS is developed on the basis of biochemical data on the pure competitive inhibition of anionic substrates like succinate by the classical anionic uncouplers of OXPHOS (2,4-dinitrophenol, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and dicoumarol), and pharmacological data on the unique site-selective, energy-linked inhibition of energy conservation pathways in mitochondria induced by the guanidine derivatives. It is further found that uncouplers themselves are site-specific and exhibit differential selectivity and efficacy in reversing the inhibition caused by the Site 1/Complex I or Site 2/Complexes II–III-selective guanidine derivatives. These results lead to new vistas and sufficient complexity in the network of energy conservation pathways in the mitochondrial respiratory chain that necessitate discrete points of interaction with two classes of guanidine derivatives and uncoupling agents and thereby separate and distinct energy transfer pathways between Site 1 and Site 2 and the intermediate that energizes adenosine triphosphate (ATP) synthesis by Complex V. Interpretation based on Mitchell’s single-ion chemiosmotic theory that postulates only a single energy pool is inadequate to rationalize the data and account for the required complexity. The above results and available information are shown to be explained by Nath’s two-ion theory of energy coupling and ATP synthesis, involving coupled movement of succinate anions and protons, along with the requirement postulated by the theory for maintenance of homeostasis and ion translocation across the energy-transducing membrane of both succinate monoanions and succinate dianions by Complexes I–V in the OXPHOS supercomplexes. The new model of energy transfer in mitochondria is mapped onto the solved structures of the supercomplexes and integrated into a consistent model with the three-dimensional electron microscope computer tomography visualization of the internal structure of the cristae membranes in mammalian mitochondria. The model also offers valuable insights into diseased states induced in type 2 diabetes and especially in Alzheimer’s and other neurodegenerative diseases that involve mitochondrial dysfunction.","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"13 1","pages":"272 - 288"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Supercomplex supercomplexes: Raison d’etre and functional significance of supramolecular organization in oxidative phosphorylation\",\"authors\":\"S. Nath\",\"doi\":\"10.1515/bmc-2022-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Following structural determination by recent advances in electron cryomicroscopy, it is now well established that the respiratory Complexes I–IV in oxidative phosphorylation (OXPHOS) are organized into supercomplexes in the respirasome. Nonetheless, the reason for the existence of the OXPHOS supercomplexes and their functional role remains an enigma. Several hypotheses have been proposed for the existence of these supercomplex supercomplexes. A commonly-held view asserts that they enhance catalysis by substrate channeling. However, this – and other views – has been challenged based on structural and biophysical information. Hence, new ideas, concepts, and frameworks are needed. Here, a new model of energy transfer in OXPHOS is developed on the basis of biochemical data on the pure competitive inhibition of anionic substrates like succinate by the classical anionic uncouplers of OXPHOS (2,4-dinitrophenol, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and dicoumarol), and pharmacological data on the unique site-selective, energy-linked inhibition of energy conservation pathways in mitochondria induced by the guanidine derivatives. It is further found that uncouplers themselves are site-specific and exhibit differential selectivity and efficacy in reversing the inhibition caused by the Site 1/Complex I or Site 2/Complexes II–III-selective guanidine derivatives. These results lead to new vistas and sufficient complexity in the network of energy conservation pathways in the mitochondrial respiratory chain that necessitate discrete points of interaction with two classes of guanidine derivatives and uncoupling agents and thereby separate and distinct energy transfer pathways between Site 1 and Site 2 and the intermediate that energizes adenosine triphosphate (ATP) synthesis by Complex V. Interpretation based on Mitchell’s single-ion chemiosmotic theory that postulates only a single energy pool is inadequate to rationalize the data and account for the required complexity. The above results and available information are shown to be explained by Nath’s two-ion theory of energy coupling and ATP synthesis, involving coupled movement of succinate anions and protons, along with the requirement postulated by the theory for maintenance of homeostasis and ion translocation across the energy-transducing membrane of both succinate monoanions and succinate dianions by Complexes I–V in the OXPHOS supercomplexes. The new model of energy transfer in mitochondria is mapped onto the solved structures of the supercomplexes and integrated into a consistent model with the three-dimensional electron microscope computer tomography visualization of the internal structure of the cristae membranes in mammalian mitochondria. The model also offers valuable insights into diseased states induced in type 2 diabetes and especially in Alzheimer’s and other neurodegenerative diseases that involve mitochondrial dysfunction.\",\"PeriodicalId\":38392,\"journal\":{\"name\":\"Biomolecular Concepts\",\"volume\":\"13 1\",\"pages\":\"272 - 288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular Concepts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmc-2022-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6

摘要

摘要:在电子低温显微镜的最新进展下,现在已经确定氧化磷酸化(OXPHOS)中的呼吸复合物I-IV在呼吸小体中被组织成超复合物。尽管如此,OXPHOS超复合体存在的原因及其功能作用仍然是一个谜。对于这些超复合体的存在,已经提出了几个假设。一种普遍持有的观点认为,它们通过底物通道增强催化作用。然而,基于结构和生物物理信息,这一观点和其他观点受到了挑战。因此,需要新的想法、概念和框架。本研究基于OXPHOS经典阴离子解耦剂(2,4-二硝基苯酚、羰基氰化物4-(三氟甲氧基)苯腙和二oumarol)对琥珀酸盐等阴离子底物的纯竞争性抑制的生化数据,以及胍衍生物诱导的线粒体能量守恒途径的独特位点选择性、能量连锁抑制的药理学数据,建立了OXPHOS中新的能量传递模型。进一步发现解偶联剂本身具有位点特异性,在逆转由Site 1/Complex I或Site 2/Complexes ii - iii选择性胍衍生物引起的抑制方面表现出不同的选择性和有效性。这些结果为线粒体呼吸链中的能量守恒途径网络带来了新的前景和足够的复杂性,这需要与两类胍衍生物和解偶联剂相互作用的离散点,从而在Site 1和Site 2以及激活三磷酸腺苷(ATP)合成的中间体之间分离和不同的能量转移途径假设只有一个能量池不足以使数据合理化并解释所需的复杂性。上述结果和现有信息可以用Nath的能量耦合和ATP合成双离子理论来解释,该理论涉及琥珀酸阴离子和质子的耦合运动,以及OXPHOS超配合物中配合物I-V在琥珀酸单阴离子和琥珀酸双阴离子的能量传导膜上维持稳态和离子转运的理论假设。线粒体能量传递的新模型被映射到超复合体的已解结构上,并与哺乳动物线粒体嵴膜内部结构的三维电子显微镜计算机断层扫描可视化集成到一个一致的模型中。该模型还为2型糖尿病,特别是阿尔茨海默氏症和其他涉及线粒体功能障碍的神经退行性疾病诱导的疾病状态提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supercomplex supercomplexes: Raison d’etre and functional significance of supramolecular organization in oxidative phosphorylation
Abstract Following structural determination by recent advances in electron cryomicroscopy, it is now well established that the respiratory Complexes I–IV in oxidative phosphorylation (OXPHOS) are organized into supercomplexes in the respirasome. Nonetheless, the reason for the existence of the OXPHOS supercomplexes and their functional role remains an enigma. Several hypotheses have been proposed for the existence of these supercomplex supercomplexes. A commonly-held view asserts that they enhance catalysis by substrate channeling. However, this – and other views – has been challenged based on structural and biophysical information. Hence, new ideas, concepts, and frameworks are needed. Here, a new model of energy transfer in OXPHOS is developed on the basis of biochemical data on the pure competitive inhibition of anionic substrates like succinate by the classical anionic uncouplers of OXPHOS (2,4-dinitrophenol, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and dicoumarol), and pharmacological data on the unique site-selective, energy-linked inhibition of energy conservation pathways in mitochondria induced by the guanidine derivatives. It is further found that uncouplers themselves are site-specific and exhibit differential selectivity and efficacy in reversing the inhibition caused by the Site 1/Complex I or Site 2/Complexes II–III-selective guanidine derivatives. These results lead to new vistas and sufficient complexity in the network of energy conservation pathways in the mitochondrial respiratory chain that necessitate discrete points of interaction with two classes of guanidine derivatives and uncoupling agents and thereby separate and distinct energy transfer pathways between Site 1 and Site 2 and the intermediate that energizes adenosine triphosphate (ATP) synthesis by Complex V. Interpretation based on Mitchell’s single-ion chemiosmotic theory that postulates only a single energy pool is inadequate to rationalize the data and account for the required complexity. The above results and available information are shown to be explained by Nath’s two-ion theory of energy coupling and ATP synthesis, involving coupled movement of succinate anions and protons, along with the requirement postulated by the theory for maintenance of homeostasis and ion translocation across the energy-transducing membrane of both succinate monoanions and succinate dianions by Complexes I–V in the OXPHOS supercomplexes. The new model of energy transfer in mitochondria is mapped onto the solved structures of the supercomplexes and integrated into a consistent model with the three-dimensional electron microscope computer tomography visualization of the internal structure of the cristae membranes in mammalian mitochondria. The model also offers valuable insights into diseased states induced in type 2 diabetes and especially in Alzheimer’s and other neurodegenerative diseases that involve mitochondrial dysfunction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular Concepts
Biomolecular Concepts Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍: BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.
期刊最新文献
Anti-arthritic potential of crude sulfated polysaccharide from marine macroalgae Sargassum ilicifolium (Turner) C. Agardh: Regulation of cytokine cascade. Exploring cardiovascular implications in systemic lupus erythematosus: A holistic analysis of complications, diagnostic criteria, and therapeutic modalities, encompassing pharmacological and adjuvant approaches. Toxicity of bisphenol A and p-nitrophenol on tomato plants: Morpho-physiological, ionomic profile, and antioxidants/defense-related gene expression studies. A comprehensive review of the interaction between COVID-19 spike proteins with mammalian small and major heat shock proteins. Biochemical dynamics during postharvest: Highlighting the interplay of stress during storage and maturation of fresh produce.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1