{"title":"迎接挑战:成年学生对机构支持的看法,以增加获得生物技术职业的机会","authors":"Lindsay Portnoy, Ash Sadler, Elizabeth Zulick","doi":"10.1108/heswbl-06-2022-0128","DOIUrl":null,"url":null,"abstract":"PurposeAmidst continued calls for the democratization of access to higher education for historically underrepresented populations alongside the first global health crisis in a century lies the opportunity to address persistent societal needs: increasing access for underrepresented minority students to educational pathways that lead to careers in lucrative fields of science, technology, engineering and math (STEM).Design/methodology/approachStudent participants enrolled in the biotechnology pathway Associates, Bachelors and Masters programs share programmatic experience in an accelerated biotechnology program through a bi-annual survey grounded in the central tenets of social-cognitive career theory aimed at understanding requisite academic, social and financial support for student success.FindingsThe pathway program described in this paper emerged to address the need to support underrepresented students in degree attainment and taking on roles in the growing field of biotechnology through a novel, multi-degree, multi-institutional pathway to STEM degree attainment and career success.Social implicationsThis work has advanced understanding about how to effectively align higher education institutions with each other and with evolving STEM labor market demands while documenting the impact of essential academic, career and social supports recognized in the literature as high impact practices in broadening participation and increasing retention of underrepresented minority students in lucrative STEM careers.Originality/valuePathway programs which best support student success include robust mentoring, experiential learning and robust student scholarship support, part of the design of this unique pathway program. The authors share how this program utilizes high impact practices to provide low-income, underrepresented minority students with supportive, accelerated biotechnology degrees in preparation for success in the job market. What's more, of all our BS-level graduates thus far, 100% are employed and 93% within the biotechnology field. For many, the opportunity to raise their family out of poverty via a stable, high paying job is directly tied to their successes within this program.","PeriodicalId":45549,"journal":{"name":"Higher Education Skills and Work-based Learning","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rising to the challenge: adult student perceptions of institutional supports to increase access to careers in biotechnology\",\"authors\":\"Lindsay Portnoy, Ash Sadler, Elizabeth Zulick\",\"doi\":\"10.1108/heswbl-06-2022-0128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeAmidst continued calls for the democratization of access to higher education for historically underrepresented populations alongside the first global health crisis in a century lies the opportunity to address persistent societal needs: increasing access for underrepresented minority students to educational pathways that lead to careers in lucrative fields of science, technology, engineering and math (STEM).Design/methodology/approachStudent participants enrolled in the biotechnology pathway Associates, Bachelors and Masters programs share programmatic experience in an accelerated biotechnology program through a bi-annual survey grounded in the central tenets of social-cognitive career theory aimed at understanding requisite academic, social and financial support for student success.FindingsThe pathway program described in this paper emerged to address the need to support underrepresented students in degree attainment and taking on roles in the growing field of biotechnology through a novel, multi-degree, multi-institutional pathway to STEM degree attainment and career success.Social implicationsThis work has advanced understanding about how to effectively align higher education institutions with each other and with evolving STEM labor market demands while documenting the impact of essential academic, career and social supports recognized in the literature as high impact practices in broadening participation and increasing retention of underrepresented minority students in lucrative STEM careers.Originality/valuePathway programs which best support student success include robust mentoring, experiential learning and robust student scholarship support, part of the design of this unique pathway program. The authors share how this program utilizes high impact practices to provide low-income, underrepresented minority students with supportive, accelerated biotechnology degrees in preparation for success in the job market. What's more, of all our BS-level graduates thus far, 100% are employed and 93% within the biotechnology field. For many, the opportunity to raise their family out of poverty via a stable, high paying job is directly tied to their successes within this program.\",\"PeriodicalId\":45549,\"journal\":{\"name\":\"Higher Education Skills and Work-based Learning\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Higher Education Skills and Work-based Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/heswbl-06-2022-0128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Higher Education Skills and Work-based Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/heswbl-06-2022-0128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Rising to the challenge: adult student perceptions of institutional supports to increase access to careers in biotechnology
PurposeAmidst continued calls for the democratization of access to higher education for historically underrepresented populations alongside the first global health crisis in a century lies the opportunity to address persistent societal needs: increasing access for underrepresented minority students to educational pathways that lead to careers in lucrative fields of science, technology, engineering and math (STEM).Design/methodology/approachStudent participants enrolled in the biotechnology pathway Associates, Bachelors and Masters programs share programmatic experience in an accelerated biotechnology program through a bi-annual survey grounded in the central tenets of social-cognitive career theory aimed at understanding requisite academic, social and financial support for student success.FindingsThe pathway program described in this paper emerged to address the need to support underrepresented students in degree attainment and taking on roles in the growing field of biotechnology through a novel, multi-degree, multi-institutional pathway to STEM degree attainment and career success.Social implicationsThis work has advanced understanding about how to effectively align higher education institutions with each other and with evolving STEM labor market demands while documenting the impact of essential academic, career and social supports recognized in the literature as high impact practices in broadening participation and increasing retention of underrepresented minority students in lucrative STEM careers.Originality/valuePathway programs which best support student success include robust mentoring, experiential learning and robust student scholarship support, part of the design of this unique pathway program. The authors share how this program utilizes high impact practices to provide low-income, underrepresented minority students with supportive, accelerated biotechnology degrees in preparation for success in the job market. What's more, of all our BS-level graduates thus far, 100% are employed and 93% within the biotechnology field. For many, the opportunity to raise their family out of poverty via a stable, high paying job is directly tied to their successes within this program.