硅胶作为吸附剂和催化剂载体:技术改进和替代生产途径的探索

IF 0.7 Q4 ENGINEERING, CHEMICAL Catalysis in Industry Pub Date : 2023-09-04 DOI:10.1134/S2070050423030054
G. V. Mamontov, E. V. Evdokimova, A. S. Savel’eva, A. V. Zubkov, N. N. Mikheeva, I. N. Mazov, A. S. Knyazev
{"title":"硅胶作为吸附剂和催化剂载体:技术改进和替代生产途径的探索","authors":"G. V. Mamontov,&nbsp;E. V. Evdokimova,&nbsp;A. S. Savel’eva,&nbsp;A. V. Zubkov,&nbsp;N. N. Mikheeva,&nbsp;I. N. Mazov,&nbsp;A. S. Knyazev","doi":"10.1134/S2070050423030054","DOIUrl":null,"url":null,"abstract":"<p>Silica gels are porous materials that are commonly used both in industry and in everyday life. Russian manufacturers produce spherical and powdered silica gels; however, a number of fields of application of silica gels are entirely dependent on import. Therefore, it is necessary to develop silica gel production technologies, the introduction of which would make it possible to replace imported silica gels. Methods for improving the properties of spherical silica gels and new solutions for the production of SiO<sub>2</sub>, in particular, silica gel powders and silica gels with an ordered pore structure, are described. It is proposed that they should be produced using cheap feedstocks, in particular, the aluminum industry waste Si-stoff and the cheap natural material diatomite. It is shown that control of the silica precipitation and structure formation parameters provides the formation of silica gels with a wide range of pore structure characteristics, which makes it possible to use them in various fields.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 3","pages":"221 - 228"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silica Gel as a Sorbent and Catalyst Support: Improvement of Technologies and Search for Alternative Production Routes\",\"authors\":\"G. V. Mamontov,&nbsp;E. V. Evdokimova,&nbsp;A. S. Savel’eva,&nbsp;A. V. Zubkov,&nbsp;N. N. Mikheeva,&nbsp;I. N. Mazov,&nbsp;A. S. Knyazev\",\"doi\":\"10.1134/S2070050423030054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silica gels are porous materials that are commonly used both in industry and in everyday life. Russian manufacturers produce spherical and powdered silica gels; however, a number of fields of application of silica gels are entirely dependent on import. Therefore, it is necessary to develop silica gel production technologies, the introduction of which would make it possible to replace imported silica gels. Methods for improving the properties of spherical silica gels and new solutions for the production of SiO<sub>2</sub>, in particular, silica gel powders and silica gels with an ordered pore structure, are described. It is proposed that they should be produced using cheap feedstocks, in particular, the aluminum industry waste Si-stoff and the cheap natural material diatomite. It is shown that control of the silica precipitation and structure formation parameters provides the formation of silica gels with a wide range of pore structure characteristics, which makes it possible to use them in various fields.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"15 3\",\"pages\":\"221 - 228\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050423030054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050423030054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

硅胶是一种多孔材料,在工业和日常生活中都广泛使用。俄罗斯厂家生产球形和粉状硅胶;然而,硅胶的一些应用领域完全依赖进口。因此,有必要开发硅胶生产技术,使其成为替代进口硅胶的可能。介绍了改善球形硅胶性能的方法和生产二氧化硅的新解决方案,特别是硅胶粉末和具有有序孔结构的硅胶。建议利用廉价的原料,特别是利用铝工业废硅渣和廉价的天然材料硅藻土来生产。研究表明,控制二氧化硅的沉淀和结构形成参数,可以形成具有广泛孔隙结构特征的硅胶,从而使其在各个领域的应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silica Gel as a Sorbent and Catalyst Support: Improvement of Technologies and Search for Alternative Production Routes

Silica gels are porous materials that are commonly used both in industry and in everyday life. Russian manufacturers produce spherical and powdered silica gels; however, a number of fields of application of silica gels are entirely dependent on import. Therefore, it is necessary to develop silica gel production technologies, the introduction of which would make it possible to replace imported silica gels. Methods for improving the properties of spherical silica gels and new solutions for the production of SiO2, in particular, silica gel powders and silica gels with an ordered pore structure, are described. It is proposed that they should be produced using cheap feedstocks, in particular, the aluminum industry waste Si-stoff and the cheap natural material diatomite. It is shown that control of the silica precipitation and structure formation parameters provides the formation of silica gels with a wide range of pore structure characteristics, which makes it possible to use them in various fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis in Industry
Catalysis in Industry ENGINEERING, CHEMICAL-
CiteScore
1.30
自引率
14.30%
发文量
21
期刊介绍: The journal covers the following topical areas: Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.
期刊最新文献
The Oxidative Chlorination of Hydrocarbons I: The Deacon Reaction. The Oxidative Chlorination of Saturated C1 and C2 Hydrocarbons The Oxidative Chlorination of Hydrocarbons II: The Oxidative Chlorination of Propylene, 1,3-Butadiene, Acetylene, and Benzene A Bifunctional Cobalt Catalyst for the Fischer–Tropsch Synthesis of Low Pour-Point Diesel Fuel, from Development to Implementation. Part 3: Experience from Creating an Industrial Technology of Preparation Preparing Hydroxylamine Sulfate via the Hydrogenation of NO on Pt/Graphite Catalysts III: Functionalizing the Surfaces of Supports and the Formation of the Active Component when Synthesizing the Catalyst Efficient Catalysts Based on Substitutional Solid Solutions and Palladium Intermetallic Compounds for the Selective Hydrogenation of Acetylene to Ethylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1