Wenhai Shi , Miaomiao Wang , Donghao Li , Xianwei Li , Mengying Sun
{"title":"黄土高原洪峰流量估算方法的改进","authors":"Wenhai Shi , Miaomiao Wang , Donghao Li , Xianwei Li , Mengying Sun","doi":"10.1016/j.iswcr.2022.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>An accurate prediction of peak discharge in watersheds is critical not only for water resource management, but also for understanding the complex relationships of hydrological processes. In this study, a modified peak discharge formula based on the Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) model was developed by introducing rainfall intensity and soil moisture factors. The reliability of the proposed method was tested with data from 1464 storm events in 41 watersheds and was applied to 256 storm events in five remaining typical watersheds using the optimized parameters. The results indicate that the proposed method is highly accurate in terms of model efficiency, as determined by Nash–Sutcliffe efficiencies (<em>NSEs</em>) of 88.60%, 74.04%, and 90.12% during the calibration, validation, and application cases, respectively. Furthermore, it performed better than the original and modified CREAMS methods. Subsequently, using the parameters derived from the initial 41 watersheds and the runoff estimated using the modified Soil Conservation Service curve number (SCS–CN) method, the proposed method was used to predict the peak discharge from the last five typical watersheds. Large <em>NSE</em> (63.88–80.83%) and low root mean square error (<em>RMSE</em>) values (0.31–35.93 m<sup>3</sup>s<sup>-1</sup>) were obtained for the five watersheds. Overall, the proposed peak discharge model, combined with the modified SCS-CN method, may accurately predict event-based peak discharge and runoff for general applications under various hydrological and geomorphic conditions in the Loess Plateau region.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 2","pages":"Pages 290-300"},"PeriodicalIF":7.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An improved method that incorporates the estimated runoff for peak discharge prediction on the Chinese Loess Plateau\",\"authors\":\"Wenhai Shi , Miaomiao Wang , Donghao Li , Xianwei Li , Mengying Sun\",\"doi\":\"10.1016/j.iswcr.2022.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An accurate prediction of peak discharge in watersheds is critical not only for water resource management, but also for understanding the complex relationships of hydrological processes. In this study, a modified peak discharge formula based on the Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) model was developed by introducing rainfall intensity and soil moisture factors. The reliability of the proposed method was tested with data from 1464 storm events in 41 watersheds and was applied to 256 storm events in five remaining typical watersheds using the optimized parameters. The results indicate that the proposed method is highly accurate in terms of model efficiency, as determined by Nash–Sutcliffe efficiencies (<em>NSEs</em>) of 88.60%, 74.04%, and 90.12% during the calibration, validation, and application cases, respectively. Furthermore, it performed better than the original and modified CREAMS methods. Subsequently, using the parameters derived from the initial 41 watersheds and the runoff estimated using the modified Soil Conservation Service curve number (SCS–CN) method, the proposed method was used to predict the peak discharge from the last five typical watersheds. Large <em>NSE</em> (63.88–80.83%) and low root mean square error (<em>RMSE</em>) values (0.31–35.93 m<sup>3</sup>s<sup>-1</sup>) were obtained for the five watersheds. Overall, the proposed peak discharge model, combined with the modified SCS-CN method, may accurately predict event-based peak discharge and runoff for general applications under various hydrological and geomorphic conditions in the Loess Plateau region.</p></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":\"11 2\",\"pages\":\"Pages 290-300\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633922000740\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633922000740","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An improved method that incorporates the estimated runoff for peak discharge prediction on the Chinese Loess Plateau
An accurate prediction of peak discharge in watersheds is critical not only for water resource management, but also for understanding the complex relationships of hydrological processes. In this study, a modified peak discharge formula based on the Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) model was developed by introducing rainfall intensity and soil moisture factors. The reliability of the proposed method was tested with data from 1464 storm events in 41 watersheds and was applied to 256 storm events in five remaining typical watersheds using the optimized parameters. The results indicate that the proposed method is highly accurate in terms of model efficiency, as determined by Nash–Sutcliffe efficiencies (NSEs) of 88.60%, 74.04%, and 90.12% during the calibration, validation, and application cases, respectively. Furthermore, it performed better than the original and modified CREAMS methods. Subsequently, using the parameters derived from the initial 41 watersheds and the runoff estimated using the modified Soil Conservation Service curve number (SCS–CN) method, the proposed method was used to predict the peak discharge from the last five typical watersheds. Large NSE (63.88–80.83%) and low root mean square error (RMSE) values (0.31–35.93 m3s-1) were obtained for the five watersheds. Overall, the proposed peak discharge model, combined with the modified SCS-CN method, may accurately predict event-based peak discharge and runoff for general applications under various hydrological and geomorphic conditions in the Loess Plateau region.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research