中纬度气旋的两到四天可预测性:不要为小事而烦恼

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of the Atmospheric Sciences Pub Date : 2023-08-22 DOI:10.1175/jas-d-22-0232.1
D. J. Lloveras, D. Durran, J. Doyle
{"title":"中纬度气旋的两到四天可预测性:不要为小事而烦恼","authors":"D. J. Lloveras, D. Durran, J. Doyle","doi":"10.1175/jas-d-22-0232.1","DOIUrl":null,"url":null,"abstract":"\nWe use convection-permitting idealized simulations of moist midlatitude cyclones to compare the growth of synoptic-scale perturbations derived from an adjoint model with the growth of equal-energy-norm, monochromatic-wavelength perturbations at the smallest resolved scale. For initial magnitudes comparable to those of initial-condition uncertainties in present-day data assimilation systems, the adjoint perturbations produce a “forecast bust”, significantly changing the intensity and location of the cyclone and its accompanying precipitation. In contrast, the small-scale-wave perturbations project strongly onto the moist convection, but the upscale growth from the random displacement of individual convective cells does not significantly alter the cyclone’s development nor its accompanying precipitation through 2–4-day lead times. Instead, the differences in convection generated at early times become negligible because the development of subsequent convection is driven by the mostly unchanged synoptic-scale flow. Reducing the perturbation magnitudes by factors of 10 and 100 demonstrates that nonlinear dynamics play an important role in the displacement of the cyclone by the full-magnitude adjoint perturbations, and that the upscale growth of small-magnitude, small-scale perturbations is too slow to significantly change the cyclone. These results suggest that a sensitive dependence on the synoptic-scale initial conditions, analogous to that of the Lorenz (1963) system, may be more relevant to 2–4-day midlatitude-cyclone forecast busts than the upscale error growth in the Lorenz (1969) model.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The two- to four-day predictability of midlatitude cyclones: Don’t sweat the small stuff\",\"authors\":\"D. J. Lloveras, D. Durran, J. Doyle\",\"doi\":\"10.1175/jas-d-22-0232.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWe use convection-permitting idealized simulations of moist midlatitude cyclones to compare the growth of synoptic-scale perturbations derived from an adjoint model with the growth of equal-energy-norm, monochromatic-wavelength perturbations at the smallest resolved scale. For initial magnitudes comparable to those of initial-condition uncertainties in present-day data assimilation systems, the adjoint perturbations produce a “forecast bust”, significantly changing the intensity and location of the cyclone and its accompanying precipitation. In contrast, the small-scale-wave perturbations project strongly onto the moist convection, but the upscale growth from the random displacement of individual convective cells does not significantly alter the cyclone’s development nor its accompanying precipitation through 2–4-day lead times. Instead, the differences in convection generated at early times become negligible because the development of subsequent convection is driven by the mostly unchanged synoptic-scale flow. Reducing the perturbation magnitudes by factors of 10 and 100 demonstrates that nonlinear dynamics play an important role in the displacement of the cyclone by the full-magnitude adjoint perturbations, and that the upscale growth of small-magnitude, small-scale perturbations is too slow to significantly change the cyclone. These results suggest that a sensitive dependence on the synoptic-scale initial conditions, analogous to that of the Lorenz (1963) system, may be more relevant to 2–4-day midlatitude-cyclone forecast busts than the upscale error growth in the Lorenz (1969) model.\",\"PeriodicalId\":17231,\"journal\":{\"name\":\"Journal of the Atmospheric Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jas-d-22-0232.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jas-d-22-0232.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们使用对流允许理想化的湿润中纬度气旋模拟来比较伴随模式衍生的天气尺度扰动的增长与最小分辨尺度上等能量范数、单色波长扰动的增长。对于与当前数据同化系统中初始条件不确定性相当的初始量级,伴随的扰动产生“预报中断”,显著改变气旋及其伴随降水的强度和位置。相比之下,小尺度波扰动强烈投射到湿对流上,但单个对流单体随机位移引起的高阶增长在2 - 4天的提前时间内对气旋的发展及其伴随的降水没有显著改变。相反,早期产生的对流差异可以忽略不计,因为随后对流的发展是由基本不变的天气尺度气流驱动的。将扰动量级降低10倍和100倍,表明非线性动力学对气旋的位移起着重要作用,而小量级、小尺度扰动的高级化增长太慢,不足以显著改变气旋。这些结果表明,类似于Lorenz(1963)系统的对天气尺度初始条件的敏感依赖,可能比Lorenz(1969)模式的高阶误差增长与2 - 4天中纬度气旋预报破裂更相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The two- to four-day predictability of midlatitude cyclones: Don’t sweat the small stuff
We use convection-permitting idealized simulations of moist midlatitude cyclones to compare the growth of synoptic-scale perturbations derived from an adjoint model with the growth of equal-energy-norm, monochromatic-wavelength perturbations at the smallest resolved scale. For initial magnitudes comparable to those of initial-condition uncertainties in present-day data assimilation systems, the adjoint perturbations produce a “forecast bust”, significantly changing the intensity and location of the cyclone and its accompanying precipitation. In contrast, the small-scale-wave perturbations project strongly onto the moist convection, but the upscale growth from the random displacement of individual convective cells does not significantly alter the cyclone’s development nor its accompanying precipitation through 2–4-day lead times. Instead, the differences in convection generated at early times become negligible because the development of subsequent convection is driven by the mostly unchanged synoptic-scale flow. Reducing the perturbation magnitudes by factors of 10 and 100 demonstrates that nonlinear dynamics play an important role in the displacement of the cyclone by the full-magnitude adjoint perturbations, and that the upscale growth of small-magnitude, small-scale perturbations is too slow to significantly change the cyclone. These results suggest that a sensitive dependence on the synoptic-scale initial conditions, analogous to that of the Lorenz (1963) system, may be more relevant to 2–4-day midlatitude-cyclone forecast busts than the upscale error growth in the Lorenz (1969) model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Atmospheric Sciences
Journal of the Atmospheric Sciences 地学-气象与大气科学
CiteScore
0.20
自引率
22.60%
发文量
196
审稿时长
3-6 weeks
期刊介绍: The Journal of the Atmospheric Sciences (JAS) publishes basic research related to the physics, dynamics, and chemistry of the atmosphere of Earth and other planets, with emphasis on the quantitative and deductive aspects of the subject. The links provide detailed information for readers, authors, reviewers, and those who wish to submit a manuscript for consideration.
期刊最新文献
Synchronous Papillary and Follicular Carcinoma with Scalp and Nodal Metastasis: A case report with review of literature. Characteristics of Turbulence Intermittency, Fine Structures, and Flux Correction in the Taklimakan Desert Tropospheric thermal forcing of the stratosphere through quasi-balanced dynamics Asymmetry of the Distribution of Vertical Velocities of the Extratropical Atmosphere in Theory, Models and Reanalysis A new pathway for tornadogenesis exposed by numerical simulations of supercells in turbulent environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1