Tamara Agner, Amadeo Zimermann, Fabricio Machado, Brenno A. D. Neto, Pedro H. H. de Araújo, Claudia Sayer
{"title":"含铁咪唑基离子液体催化N -丁基乙烯基醚聚合","authors":"Tamara Agner, Amadeo Zimermann, Fabricio Machado, Brenno A. D. Neto, Pedro H. H. de Araújo, Claudia Sayer","doi":"10.1002/mren.202300002","DOIUrl":null,"url":null,"abstract":"<p>The iron-containing imidazolium-based ionic liquids (ILs) 1-<i>n</i>-butyl-3-methylimidazolium heptachlorodiferrate (BMI.Fe<sub>2</sub>Cl<sub>7</sub>) and 1-<i>n</i>-butyl-3-methylimidazolium tetrachloroferrate (BMI.FeCl<sub>4</sub>) are applied as catalysts in the homogeneous polymerization of <i>n</i>-butyl vinyl ether. Both solventless conditions as well as using different organic solvents, catalyst concentrations, temperatures, and reaction times are tested to assess the polymerization conditions that lead to the highest molecular weights of poly(<i>n</i>-butyl vinyl ether). The Lewis acidic IL BMI.Fe<sub>2</sub>Cl<sub>7</sub> proves to be highly efficient, even at low catalyst concentrations. In bulk polymerization, polymers with 142 kg mol<sup>−1</sup> are obtained using a 1:10000 molar ratio of catalyst to monomer. In solution polymerization, the monomer consumption is also rapid and the molecular weight of the polymer is related to the catalyst concentration used. These results indicate the potential of this catalyst for industrial applications. In contrast with the acidic IL, the neutral iron-containing imidazolium-based IL BMI.FeCl<sub>4</sub> does not show any catalytic activity.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymerization of N-Butyl Vinyl Ether Catalyzed by Iron-Containing Imidazolium-Based Ionic Liquid\",\"authors\":\"Tamara Agner, Amadeo Zimermann, Fabricio Machado, Brenno A. D. Neto, Pedro H. H. de Araújo, Claudia Sayer\",\"doi\":\"10.1002/mren.202300002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The iron-containing imidazolium-based ionic liquids (ILs) 1-<i>n</i>-butyl-3-methylimidazolium heptachlorodiferrate (BMI.Fe<sub>2</sub>Cl<sub>7</sub>) and 1-<i>n</i>-butyl-3-methylimidazolium tetrachloroferrate (BMI.FeCl<sub>4</sub>) are applied as catalysts in the homogeneous polymerization of <i>n</i>-butyl vinyl ether. Both solventless conditions as well as using different organic solvents, catalyst concentrations, temperatures, and reaction times are tested to assess the polymerization conditions that lead to the highest molecular weights of poly(<i>n</i>-butyl vinyl ether). The Lewis acidic IL BMI.Fe<sub>2</sub>Cl<sub>7</sub> proves to be highly efficient, even at low catalyst concentrations. In bulk polymerization, polymers with 142 kg mol<sup>−1</sup> are obtained using a 1:10000 molar ratio of catalyst to monomer. In solution polymerization, the monomer consumption is also rapid and the molecular weight of the polymer is related to the catalyst concentration used. These results indicate the potential of this catalyst for industrial applications. In contrast with the acidic IL, the neutral iron-containing imidazolium-based IL BMI.FeCl<sub>4</sub> does not show any catalytic activity.</p>\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
用含铁咪唑离子液体(il) - 1-正丁基-3-甲基咪唑七氯异酸盐(BMI.Fe2Cl7)和- 1-正丁基-3-甲基咪唑四氯铁酸盐(BMI.FeCl4)作为催化剂,催化了正丁基乙烯基醚的均相聚合。测试了无溶剂条件以及使用不同的有机溶剂、催化剂浓度、温度和反应时间,以评估聚合条件,导致聚正丁基乙烯基醚的最高分子量。刘易斯酸性IL指数。Fe2Cl7被证明是高效的,即使在低催化剂浓度下也是如此。在本体聚合中,催化剂与单体的摩尔比为1:10000,可得到142 kg mol−1的聚合物。在溶液聚合中,单体的消耗也很快,聚合物的分子量与所用催化剂的浓度有关。这些结果表明该催化剂具有工业应用的潜力。与酸性IL相比,中性含铁咪唑基IL BMI。FeCl4没有表现出任何催化活性。
Polymerization of N-Butyl Vinyl Ether Catalyzed by Iron-Containing Imidazolium-Based Ionic Liquid
The iron-containing imidazolium-based ionic liquids (ILs) 1-n-butyl-3-methylimidazolium heptachlorodiferrate (BMI.Fe2Cl7) and 1-n-butyl-3-methylimidazolium tetrachloroferrate (BMI.FeCl4) are applied as catalysts in the homogeneous polymerization of n-butyl vinyl ether. Both solventless conditions as well as using different organic solvents, catalyst concentrations, temperatures, and reaction times are tested to assess the polymerization conditions that lead to the highest molecular weights of poly(n-butyl vinyl ether). The Lewis acidic IL BMI.Fe2Cl7 proves to be highly efficient, even at low catalyst concentrations. In bulk polymerization, polymers with 142 kg mol−1 are obtained using a 1:10000 molar ratio of catalyst to monomer. In solution polymerization, the monomer consumption is also rapid and the molecular weight of the polymer is related to the catalyst concentration used. These results indicate the potential of this catalyst for industrial applications. In contrast with the acidic IL, the neutral iron-containing imidazolium-based IL BMI.FeCl4 does not show any catalytic activity.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.