{"title":"无线通信系统中SLAM的混合主动和被动传感","authors":"Jie Yang, Chao-Kai Wen, Shi Jin","doi":"10.1109/JSAC.2022.3156630.","DOIUrl":null,"url":null,"abstract":"Integrating sensing functions into future mobile equipment has become an important trend. Realizing different types of sensing and achieving mutual enhancement under the existing communication hardware architecture is a crucial challenge in realizing the deep integration of sensing and communication. In the 5G New Radio context, active sensing can be performed through uplink beam sweeping on the user equipment (UE) side to observe the surrounding environment. In addition, the UE can perform passive sensing through downlink channel estimation to measure the multipath component (MPC) information. This study is the first to develop a hybrid simultaneous localization and mapping (SLAM) mechanism that combines active and passive sensing, in which mutual enhancement between the two sensing modes is realized in communication systems. Specifically, we first establish a common feature associated with the reflective surface to bridge active and passive sensing, thus enabling information fusion. Based on the common feature, we can attain physical anchor initialization through MPC with the assistance of active sensing. Then, we extend the classic probabilistic data association SLAM mechanism to achieve UE localization and continuously refine the physical anchor and target reflections through the subsequent passive sensing. Numerical results show that the proposed hybrid active and passive sensing-based SLAM mechanism can work successfully in tricky scenarios without any prior information on the floor plan, anchors, or agents. Moreover, the proposed algorithm demonstrates significant performance gains compared with active or passive sensing only mechanisms.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"40 1","pages":"2146-2163"},"PeriodicalIF":13.8000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hybrid Active and Passive Sensing for SLAM in Wireless Communication Systems\",\"authors\":\"Jie Yang, Chao-Kai Wen, Shi Jin\",\"doi\":\"10.1109/JSAC.2022.3156630.\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating sensing functions into future mobile equipment has become an important trend. Realizing different types of sensing and achieving mutual enhancement under the existing communication hardware architecture is a crucial challenge in realizing the deep integration of sensing and communication. In the 5G New Radio context, active sensing can be performed through uplink beam sweeping on the user equipment (UE) side to observe the surrounding environment. In addition, the UE can perform passive sensing through downlink channel estimation to measure the multipath component (MPC) information. This study is the first to develop a hybrid simultaneous localization and mapping (SLAM) mechanism that combines active and passive sensing, in which mutual enhancement between the two sensing modes is realized in communication systems. Specifically, we first establish a common feature associated with the reflective surface to bridge active and passive sensing, thus enabling information fusion. Based on the common feature, we can attain physical anchor initialization through MPC with the assistance of active sensing. Then, we extend the classic probabilistic data association SLAM mechanism to achieve UE localization and continuously refine the physical anchor and target reflections through the subsequent passive sensing. Numerical results show that the proposed hybrid active and passive sensing-based SLAM mechanism can work successfully in tricky scenarios without any prior information on the floor plan, anchors, or agents. Moreover, the proposed algorithm demonstrates significant performance gains compared with active or passive sensing only mechanisms.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"40 1\",\"pages\":\"2146-2163\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2022-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2022.3156630.\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2022.3156630.","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hybrid Active and Passive Sensing for SLAM in Wireless Communication Systems
Integrating sensing functions into future mobile equipment has become an important trend. Realizing different types of sensing and achieving mutual enhancement under the existing communication hardware architecture is a crucial challenge in realizing the deep integration of sensing and communication. In the 5G New Radio context, active sensing can be performed through uplink beam sweeping on the user equipment (UE) side to observe the surrounding environment. In addition, the UE can perform passive sensing through downlink channel estimation to measure the multipath component (MPC) information. This study is the first to develop a hybrid simultaneous localization and mapping (SLAM) mechanism that combines active and passive sensing, in which mutual enhancement between the two sensing modes is realized in communication systems. Specifically, we first establish a common feature associated with the reflective surface to bridge active and passive sensing, thus enabling information fusion. Based on the common feature, we can attain physical anchor initialization through MPC with the assistance of active sensing. Then, we extend the classic probabilistic data association SLAM mechanism to achieve UE localization and continuously refine the physical anchor and target reflections through the subsequent passive sensing. Numerical results show that the proposed hybrid active and passive sensing-based SLAM mechanism can work successfully in tricky scenarios without any prior information on the floor plan, anchors, or agents. Moreover, the proposed algorithm demonstrates significant performance gains compared with active or passive sensing only mechanisms.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.