Siwei Peng, K. Man, B. Veldkamp, Yan Cai, Dongbo Tu
{"title":"强迫选择非认知评估中随机反应行为的混合模型及其在组织研究中的应用","authors":"Siwei Peng, K. Man, B. Veldkamp, Yan Cai, Dongbo Tu","doi":"10.1177/10944281231181642","DOIUrl":null,"url":null,"abstract":"For various reasons, respondents to forced-choice assessments (typically used for noncognitive psychological constructs) may respond randomly to individual items due to indecision or globally due to disengagement. Thus, random responding is a complex source of measurement bias and threatens the reliability of forced-choice assessments, which are essential in high-stakes organizational testing scenarios, such as hiring decisions. The traditional measurement models rely heavily on nonrandom, construct-relevant responses to yield accurate parameter estimates. When survey data contain many random responses, fitting traditional models may deliver biased results, which could attenuate measurement reliability. This study presents a new forced-choice measure-based mixture item response theory model (called M-TCIR) for simultaneously modeling normal and random responses (distinguishing completely and incompletely random). The feasibility of the M-TCIR was investigated via two Monte Carlo simulation studies. In addition, one empirical dataset was analyzed to illustrate the applicability of the M-TCIR in practice. The results revealed that most model parameters were adequately recovered, and the M-TCIR was a viable alternative to model both aberrant and normal responses with high efficiency.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":" ","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Mixture Model for Random Responding Behavior in Forced-Choice Noncognitive Assessment: Implication and Application in Organizational Research\",\"authors\":\"Siwei Peng, K. Man, B. Veldkamp, Yan Cai, Dongbo Tu\",\"doi\":\"10.1177/10944281231181642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For various reasons, respondents to forced-choice assessments (typically used for noncognitive psychological constructs) may respond randomly to individual items due to indecision or globally due to disengagement. Thus, random responding is a complex source of measurement bias and threatens the reliability of forced-choice assessments, which are essential in high-stakes organizational testing scenarios, such as hiring decisions. The traditional measurement models rely heavily on nonrandom, construct-relevant responses to yield accurate parameter estimates. When survey data contain many random responses, fitting traditional models may deliver biased results, which could attenuate measurement reliability. This study presents a new forced-choice measure-based mixture item response theory model (called M-TCIR) for simultaneously modeling normal and random responses (distinguishing completely and incompletely random). The feasibility of the M-TCIR was investigated via two Monte Carlo simulation studies. In addition, one empirical dataset was analyzed to illustrate the applicability of the M-TCIR in practice. The results revealed that most model parameters were adequately recovered, and the M-TCIR was a viable alternative to model both aberrant and normal responses with high efficiency.\",\"PeriodicalId\":19689,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10944281231181642\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281231181642","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
A Mixture Model for Random Responding Behavior in Forced-Choice Noncognitive Assessment: Implication and Application in Organizational Research
For various reasons, respondents to forced-choice assessments (typically used for noncognitive psychological constructs) may respond randomly to individual items due to indecision or globally due to disengagement. Thus, random responding is a complex source of measurement bias and threatens the reliability of forced-choice assessments, which are essential in high-stakes organizational testing scenarios, such as hiring decisions. The traditional measurement models rely heavily on nonrandom, construct-relevant responses to yield accurate parameter estimates. When survey data contain many random responses, fitting traditional models may deliver biased results, which could attenuate measurement reliability. This study presents a new forced-choice measure-based mixture item response theory model (called M-TCIR) for simultaneously modeling normal and random responses (distinguishing completely and incompletely random). The feasibility of the M-TCIR was investigated via two Monte Carlo simulation studies. In addition, one empirical dataset was analyzed to illustrate the applicability of the M-TCIR in practice. The results revealed that most model parameters were adequately recovered, and the M-TCIR was a viable alternative to model both aberrant and normal responses with high efficiency.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.