Vendula Kubíčková, Z. Racova, J. Strojil, P. Šantavý, K. Urbanek
{"title":"氨苄青霉素在极性封端相上的分离:高效液相色谱法在心脏外科手术中的应用","authors":"Vendula Kubíčková, Z. Racova, J. Strojil, P. Šantavý, K. Urbanek","doi":"10.1556/1326.2021.00957","DOIUrl":null,"url":null,"abstract":"\n The accurate, simple, and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of an antibiotic ampicillin (AMP) in human blood plasma. The SPE extraction was used for the sample preparation. Chromatographic separation was accomplished by a mobile phase containing 15 mM monopotassium phosphate solution of pH 3.3 and methanol (75:25, v/v) in an isocratic mode at a flow rate of 1.4 mL min−1 at 30 °C. The separation was evaluated on a column with a new polar-endcapped C18 stationary phase Arion® Polar C18 or well-known phase Luna® Omega Polar C18. Excellent linearity (R\n 2 0.9998) was shown over range 10–300 mg L−1 with mean percentage recovery 90%. Peak shapes were symmetrical in both columns, Arion® Polar C18 and Luna® Omega Polar C18, with asymmetry factor of 1.0 and 1.4, tailing factor of 1.0 and 1.2, and retention factor of 4.6 and 5.6, respectively. The Arion® Polar C18 was almost 1.4-fold more effective than Luna® Omega Polar C18 phase. The LOQ for ampicillin was achieved 10 mg L−1 for Luna® Omega Polar C18 and 5 mg L−1 for Arion® Polar C18 using 20 µL of a solution containing 0.24 mg mL−1 of cephalexin as an internal standard.\n A number of articles dealing with the determination of ampicillin is limited, therefore, this study showed the HPLC method suitable for the determination of AMP in human blood plasma from patient who underwent elective cardiac surgical revascularization. In addition, the determination of AMP was also performed for the first time using an Arion® Polar C18 column, which effectively separated AMP from other compounds present in human blood plasma. This new polar-endcapped phase can help in separation of polar antibiotics or other polar compounds, which are unsuccessfully separated on conventional C18 column, and thus can help during method development.","PeriodicalId":7130,"journal":{"name":"Acta Chromatographica","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Separation of ampicillin on polar-endcapped phase: Development of the HPLC method to achieve its correct dosage in cardiac surgery\",\"authors\":\"Vendula Kubíčková, Z. Racova, J. Strojil, P. Šantavý, K. Urbanek\",\"doi\":\"10.1556/1326.2021.00957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The accurate, simple, and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of an antibiotic ampicillin (AMP) in human blood plasma. The SPE extraction was used for the sample preparation. Chromatographic separation was accomplished by a mobile phase containing 15 mM monopotassium phosphate solution of pH 3.3 and methanol (75:25, v/v) in an isocratic mode at a flow rate of 1.4 mL min−1 at 30 °C. The separation was evaluated on a column with a new polar-endcapped C18 stationary phase Arion® Polar C18 or well-known phase Luna® Omega Polar C18. Excellent linearity (R\\n 2 0.9998) was shown over range 10–300 mg L−1 with mean percentage recovery 90%. Peak shapes were symmetrical in both columns, Arion® Polar C18 and Luna® Omega Polar C18, with asymmetry factor of 1.0 and 1.4, tailing factor of 1.0 and 1.2, and retention factor of 4.6 and 5.6, respectively. The Arion® Polar C18 was almost 1.4-fold more effective than Luna® Omega Polar C18 phase. The LOQ for ampicillin was achieved 10 mg L−1 for Luna® Omega Polar C18 and 5 mg L−1 for Arion® Polar C18 using 20 µL of a solution containing 0.24 mg mL−1 of cephalexin as an internal standard.\\n A number of articles dealing with the determination of ampicillin is limited, therefore, this study showed the HPLC method suitable for the determination of AMP in human blood plasma from patient who underwent elective cardiac surgical revascularization. In addition, the determination of AMP was also performed for the first time using an Arion® Polar C18 column, which effectively separated AMP from other compounds present in human blood plasma. This new polar-endcapped phase can help in separation of polar antibiotics or other polar compounds, which are unsuccessfully separated on conventional C18 column, and thus can help during method development.\",\"PeriodicalId\":7130,\"journal\":{\"name\":\"Acta Chromatographica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Chromatographica\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1556/1326.2021.00957\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chromatographica","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1556/1326.2021.00957","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Separation of ampicillin on polar-endcapped phase: Development of the HPLC method to achieve its correct dosage in cardiac surgery
The accurate, simple, and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of an antibiotic ampicillin (AMP) in human blood plasma. The SPE extraction was used for the sample preparation. Chromatographic separation was accomplished by a mobile phase containing 15 mM monopotassium phosphate solution of pH 3.3 and methanol (75:25, v/v) in an isocratic mode at a flow rate of 1.4 mL min−1 at 30 °C. The separation was evaluated on a column with a new polar-endcapped C18 stationary phase Arion® Polar C18 or well-known phase Luna® Omega Polar C18. Excellent linearity (R
2 0.9998) was shown over range 10–300 mg L−1 with mean percentage recovery 90%. Peak shapes were symmetrical in both columns, Arion® Polar C18 and Luna® Omega Polar C18, with asymmetry factor of 1.0 and 1.4, tailing factor of 1.0 and 1.2, and retention factor of 4.6 and 5.6, respectively. The Arion® Polar C18 was almost 1.4-fold more effective than Luna® Omega Polar C18 phase. The LOQ for ampicillin was achieved 10 mg L−1 for Luna® Omega Polar C18 and 5 mg L−1 for Arion® Polar C18 using 20 µL of a solution containing 0.24 mg mL−1 of cephalexin as an internal standard.
A number of articles dealing with the determination of ampicillin is limited, therefore, this study showed the HPLC method suitable for the determination of AMP in human blood plasma from patient who underwent elective cardiac surgical revascularization. In addition, the determination of AMP was also performed for the first time using an Arion® Polar C18 column, which effectively separated AMP from other compounds present in human blood plasma. This new polar-endcapped phase can help in separation of polar antibiotics or other polar compounds, which are unsuccessfully separated on conventional C18 column, and thus can help during method development.
期刊介绍:
Acta Chromatographica
Open Access
Acta Chromatographica publishes peer-reviewed scientific articles on every field of chromatography, including theory of chromatography; progress in synthesis and characterization of new stationary phases; chromatography of organic, inorganic and complex compounds; enantioseparation and chromatography of chiral compounds; applications of chromatography in biology, pharmacy, medicine, and food analysis; environmental applications of chromatography; analytical and physico-chemical aspects of sample preparation for chromatography; hyphenated and combined techniques; chemometrics and its applications in separation science.