Hernani D. Chantre, Nelson Luis Saldanha da Fonseca
{"title":"基于nfv的MEC基础设施中保护片发放的定位问题","authors":"Hernani D. Chantre, Nelson Luis Saldanha da Fonseca","doi":"10.1109/JSAC.2020.2986869","DOIUrl":null,"url":null,"abstract":"The support of stringent requirements such as ultra-low latency and ultra-reliability of the forthcoming 5G services poses several challenges to telecommunications infrastructure providers. Network Function Virtualization, multi-access edge computing (MEC), and network slicing capabilities can help the support of such requirements. However, a trade-off between the cost of resource deployment and the support of service requirements needs to be taken into account in the design of NFV-based 5G networks. In this paper, we investigate the MEC location problem, which aims at selecting locations to place MECs hosting protected slices. We propose a MEC location problem enhanced with 1: 1 and <inline-formula> <tex-math notation=\"LaTeX\">$1:N$ </tex-math></inline-formula> protection schemes for the provisioning of protected slices. In the 1: 1 scheme, protection is assured by reserving a backup slice for each tenant, whereas in the <inline-formula> <tex-math notation=\"LaTeX\">$1:N$ </tex-math></inline-formula> scheme, a backup slice is shared among <inline-formula> <tex-math notation=\"LaTeX\">$N$ </tex-math></inline-formula> tenants. The problem is modeled as a multi-criteria optimization problem and solved by the employment of a multi-objective evolutionary non-dominated sorting genetic algorithm. A comparison between the 1: 1 and <inline-formula> <tex-math notation=\"LaTeX\">$1:N$ </tex-math></inline-formula> protection schemes is carried out in the context of 5G network slicing. Results show that the protection scheme 1: 1 can reduce the response time, at a higher deployment cost when compared to the <inline-formula> <tex-math notation=\"LaTeX\">$1:N$ </tex-math></inline-formula> scheme.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1505-1514"},"PeriodicalIF":13.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986869","citationCount":"29","resultStr":"{\"title\":\"The Location Problem for the Provisioning of Protected Slices in NFV-Based MEC Infrastructure\",\"authors\":\"Hernani D. Chantre, Nelson Luis Saldanha da Fonseca\",\"doi\":\"10.1109/JSAC.2020.2986869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The support of stringent requirements such as ultra-low latency and ultra-reliability of the forthcoming 5G services poses several challenges to telecommunications infrastructure providers. Network Function Virtualization, multi-access edge computing (MEC), and network slicing capabilities can help the support of such requirements. However, a trade-off between the cost of resource deployment and the support of service requirements needs to be taken into account in the design of NFV-based 5G networks. In this paper, we investigate the MEC location problem, which aims at selecting locations to place MECs hosting protected slices. We propose a MEC location problem enhanced with 1: 1 and <inline-formula> <tex-math notation=\\\"LaTeX\\\">$1:N$ </tex-math></inline-formula> protection schemes for the provisioning of protected slices. In the 1: 1 scheme, protection is assured by reserving a backup slice for each tenant, whereas in the <inline-formula> <tex-math notation=\\\"LaTeX\\\">$1:N$ </tex-math></inline-formula> scheme, a backup slice is shared among <inline-formula> <tex-math notation=\\\"LaTeX\\\">$N$ </tex-math></inline-formula> tenants. The problem is modeled as a multi-criteria optimization problem and solved by the employment of a multi-objective evolutionary non-dominated sorting genetic algorithm. A comparison between the 1: 1 and <inline-formula> <tex-math notation=\\\"LaTeX\\\">$1:N$ </tex-math></inline-formula> protection schemes is carried out in the context of 5G network slicing. Results show that the protection scheme 1: 1 can reduce the response time, at a higher deployment cost when compared to the <inline-formula> <tex-math notation=\\\"LaTeX\\\">$1:N$ </tex-math></inline-formula> scheme.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"38 1\",\"pages\":\"1505-1514\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986869\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2020.2986869\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2986869","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The Location Problem for the Provisioning of Protected Slices in NFV-Based MEC Infrastructure
The support of stringent requirements such as ultra-low latency and ultra-reliability of the forthcoming 5G services poses several challenges to telecommunications infrastructure providers. Network Function Virtualization, multi-access edge computing (MEC), and network slicing capabilities can help the support of such requirements. However, a trade-off between the cost of resource deployment and the support of service requirements needs to be taken into account in the design of NFV-based 5G networks. In this paper, we investigate the MEC location problem, which aims at selecting locations to place MECs hosting protected slices. We propose a MEC location problem enhanced with 1: 1 and $1:N$ protection schemes for the provisioning of protected slices. In the 1: 1 scheme, protection is assured by reserving a backup slice for each tenant, whereas in the $1:N$ scheme, a backup slice is shared among $N$ tenants. The problem is modeled as a multi-criteria optimization problem and solved by the employment of a multi-objective evolutionary non-dominated sorting genetic algorithm. A comparison between the 1: 1 and $1:N$ protection schemes is carried out in the context of 5G network slicing. Results show that the protection scheme 1: 1 can reduce the response time, at a higher deployment cost when compared to the $1:N$ scheme.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.