{"title":"质量区域下β二项式分布的贝叶斯双侧群链抽样方案","authors":"Waqar Hafeez, Nazrina Aziz","doi":"10.1108/ijqrm-10-2020-0356","DOIUrl":null,"url":null,"abstract":"PurposeThis paper introduces a Bayesian two-sided group chain sampling plan (BT-SGChSP) by using binomial distribution to estimate the average proportion of defectives. In this Bayesian approach, beta distribution is used as a suitable prior of binomial distribution. The proposed plan considers both consumer's and producer's risks. Currently, group chain sampling plans only consider the consumer's risk and do not account for the producer's risk. All existing plans are used to estimate only a single point, but this plan gives a quality region for the pre-specified values of different design parameters. In other words, instead of point wise description for the designing of sampling plan based on a range of quality by involving a novel approach called quality region.Design/methodology/approachThe methodology is based on five phases, which are (1) operating procedure, (2) derivation of the probability of lot acceptance, (3) constructing plans for given acceptable quality level (AQL) and limiting quality level (LQL), (4) construction of quality intervals for BT-SGChSP and (5) selection of the sampling plans.FindingsThe findings show that the operating characteristic (OC) curve of BT-SGChSP is more ideal than the existing Bayesian group chain sampling plan because the quality regions for BT-SGChSP give less proportion of defectives for same consumer's and producer's risks.Research limitations/implicationsThere are four limitations in this study: first is the use of binomial distribution when deriving the probability of lot acceptance. Alternatively, it can be derived by using distributions such as Poisson, weighted Poisson and weighted binomial. The second is that beta distribution is used as prior distribution. Otherwise, different prior distributions can be used like: Rayleigh, exponential and generalized exponential. The third is that we adopt mean as a quality parameter, whereas median and other quintiles can be used. Forth, this paper considers probabilistic quality region (PQR) and indifference quality region (IQR).Practical implicationsThe proposed plan is an alternative of traditional group chain sampling plans that are based on only current lot information. This plan considers current lot information with preceding and succeeding lot and also considers prior information of the product.Originality/valueThis paper first time uses a tight (three acceptance criteria) and introduces a BT-SGChSP to find quality regions for both producer's and consumer's risk.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian two-sided group chain sampling plan for beta binomial distribution under quality regions\",\"authors\":\"Waqar Hafeez, Nazrina Aziz\",\"doi\":\"10.1108/ijqrm-10-2020-0356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper introduces a Bayesian two-sided group chain sampling plan (BT-SGChSP) by using binomial distribution to estimate the average proportion of defectives. In this Bayesian approach, beta distribution is used as a suitable prior of binomial distribution. The proposed plan considers both consumer's and producer's risks. Currently, group chain sampling plans only consider the consumer's risk and do not account for the producer's risk. All existing plans are used to estimate only a single point, but this plan gives a quality region for the pre-specified values of different design parameters. In other words, instead of point wise description for the designing of sampling plan based on a range of quality by involving a novel approach called quality region.Design/methodology/approachThe methodology is based on five phases, which are (1) operating procedure, (2) derivation of the probability of lot acceptance, (3) constructing plans for given acceptable quality level (AQL) and limiting quality level (LQL), (4) construction of quality intervals for BT-SGChSP and (5) selection of the sampling plans.FindingsThe findings show that the operating characteristic (OC) curve of BT-SGChSP is more ideal than the existing Bayesian group chain sampling plan because the quality regions for BT-SGChSP give less proportion of defectives for same consumer's and producer's risks.Research limitations/implicationsThere are four limitations in this study: first is the use of binomial distribution when deriving the probability of lot acceptance. Alternatively, it can be derived by using distributions such as Poisson, weighted Poisson and weighted binomial. The second is that beta distribution is used as prior distribution. Otherwise, different prior distributions can be used like: Rayleigh, exponential and generalized exponential. The third is that we adopt mean as a quality parameter, whereas median and other quintiles can be used. Forth, this paper considers probabilistic quality region (PQR) and indifference quality region (IQR).Practical implicationsThe proposed plan is an alternative of traditional group chain sampling plans that are based on only current lot information. This plan considers current lot information with preceding and succeeding lot and also considers prior information of the product.Originality/valueThis paper first time uses a tight (three acceptance criteria) and introduces a BT-SGChSP to find quality regions for both producer's and consumer's risk.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-10-2020-0356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-10-2020-0356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
Bayesian two-sided group chain sampling plan for beta binomial distribution under quality regions
PurposeThis paper introduces a Bayesian two-sided group chain sampling plan (BT-SGChSP) by using binomial distribution to estimate the average proportion of defectives. In this Bayesian approach, beta distribution is used as a suitable prior of binomial distribution. The proposed plan considers both consumer's and producer's risks. Currently, group chain sampling plans only consider the consumer's risk and do not account for the producer's risk. All existing plans are used to estimate only a single point, but this plan gives a quality region for the pre-specified values of different design parameters. In other words, instead of point wise description for the designing of sampling plan based on a range of quality by involving a novel approach called quality region.Design/methodology/approachThe methodology is based on five phases, which are (1) operating procedure, (2) derivation of the probability of lot acceptance, (3) constructing plans for given acceptable quality level (AQL) and limiting quality level (LQL), (4) construction of quality intervals for BT-SGChSP and (5) selection of the sampling plans.FindingsThe findings show that the operating characteristic (OC) curve of BT-SGChSP is more ideal than the existing Bayesian group chain sampling plan because the quality regions for BT-SGChSP give less proportion of defectives for same consumer's and producer's risks.Research limitations/implicationsThere are four limitations in this study: first is the use of binomial distribution when deriving the probability of lot acceptance. Alternatively, it can be derived by using distributions such as Poisson, weighted Poisson and weighted binomial. The second is that beta distribution is used as prior distribution. Otherwise, different prior distributions can be used like: Rayleigh, exponential and generalized exponential. The third is that we adopt mean as a quality parameter, whereas median and other quintiles can be used. Forth, this paper considers probabilistic quality region (PQR) and indifference quality region (IQR).Practical implicationsThe proposed plan is an alternative of traditional group chain sampling plans that are based on only current lot information. This plan considers current lot information with preceding and succeeding lot and also considers prior information of the product.Originality/valueThis paper first time uses a tight (three acceptance criteria) and introduces a BT-SGChSP to find quality regions for both producer's and consumer's risk.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining