质量区域下β二项式分布的贝叶斯双侧群链抽样方案

Waqar Hafeez, Nazrina Aziz
{"title":"质量区域下β二项式分布的贝叶斯双侧群链抽样方案","authors":"Waqar Hafeez, Nazrina Aziz","doi":"10.1108/ijqrm-10-2020-0356","DOIUrl":null,"url":null,"abstract":"PurposeThis paper introduces a Bayesian two-sided group chain sampling plan (BT-SGChSP) by using binomial distribution to estimate the average proportion of defectives. In this Bayesian approach, beta distribution is used as a suitable prior of binomial distribution. The proposed plan considers both consumer's and producer's risks. Currently, group chain sampling plans only consider the consumer's risk and do not account for the producer's risk. All existing plans are used to estimate only a single point, but this plan gives a quality region for the pre-specified values of different design parameters. In other words, instead of point wise description for the designing of sampling plan based on a range of quality by involving a novel approach called quality region.Design/methodology/approachThe methodology is based on five phases, which are (1) operating procedure, (2) derivation of the probability of lot acceptance, (3) constructing plans for given acceptable quality level (AQL) and limiting quality level (LQL), (4) construction of quality intervals for BT-SGChSP and (5) selection of the sampling plans.FindingsThe findings show that the operating characteristic (OC) curve of BT-SGChSP is more ideal than the existing Bayesian group chain sampling plan because the quality regions for BT-SGChSP give less proportion of defectives for same consumer's and producer's risks.Research limitations/implicationsThere are four limitations in this study: first is the use of binomial distribution when deriving the probability of lot acceptance. Alternatively, it can be derived by using distributions such as Poisson, weighted Poisson and weighted binomial. The second is that beta distribution is used as prior distribution. Otherwise, different prior distributions can be used like: Rayleigh, exponential and generalized exponential. The third is that we adopt mean as a quality parameter, whereas median and other quintiles can be used. Forth, this paper considers probabilistic quality region (PQR) and indifference quality region (IQR).Practical implicationsThe proposed plan is an alternative of traditional group chain sampling plans that are based on only current lot information. This plan considers current lot information with preceding and succeeding lot and also considers prior information of the product.Originality/valueThis paper first time uses a tight (three acceptance criteria) and introduces a BT-SGChSP to find quality regions for both producer's and consumer's risk.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian two-sided group chain sampling plan for beta binomial distribution under quality regions\",\"authors\":\"Waqar Hafeez, Nazrina Aziz\",\"doi\":\"10.1108/ijqrm-10-2020-0356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper introduces a Bayesian two-sided group chain sampling plan (BT-SGChSP) by using binomial distribution to estimate the average proportion of defectives. In this Bayesian approach, beta distribution is used as a suitable prior of binomial distribution. The proposed plan considers both consumer's and producer's risks. Currently, group chain sampling plans only consider the consumer's risk and do not account for the producer's risk. All existing plans are used to estimate only a single point, but this plan gives a quality region for the pre-specified values of different design parameters. In other words, instead of point wise description for the designing of sampling plan based on a range of quality by involving a novel approach called quality region.Design/methodology/approachThe methodology is based on five phases, which are (1) operating procedure, (2) derivation of the probability of lot acceptance, (3) constructing plans for given acceptable quality level (AQL) and limiting quality level (LQL), (4) construction of quality intervals for BT-SGChSP and (5) selection of the sampling plans.FindingsThe findings show that the operating characteristic (OC) curve of BT-SGChSP is more ideal than the existing Bayesian group chain sampling plan because the quality regions for BT-SGChSP give less proportion of defectives for same consumer's and producer's risks.Research limitations/implicationsThere are four limitations in this study: first is the use of binomial distribution when deriving the probability of lot acceptance. Alternatively, it can be derived by using distributions such as Poisson, weighted Poisson and weighted binomial. The second is that beta distribution is used as prior distribution. Otherwise, different prior distributions can be used like: Rayleigh, exponential and generalized exponential. The third is that we adopt mean as a quality parameter, whereas median and other quintiles can be used. Forth, this paper considers probabilistic quality region (PQR) and indifference quality region (IQR).Practical implicationsThe proposed plan is an alternative of traditional group chain sampling plans that are based on only current lot information. This plan considers current lot information with preceding and succeeding lot and also considers prior information of the product.Originality/valueThis paper first time uses a tight (three acceptance criteria) and introduces a BT-SGChSP to find quality regions for both producer's and consumer's risk.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-10-2020-0356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-10-2020-0356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

目的介绍一种利用二项分布估计缺陷平均比例的贝叶斯双侧群链抽样方案(BT-SGChSP)。在贝叶斯方法中,贝塔分布被用作二项分布的合适先验。拟议的计划同时考虑了消费者和生产者的风险。目前,集团连锁抽样计划只考虑消费者的风险,没有考虑生产者的风险。所有现有的方案都仅用于估计单个点,但该方案为不同设计参数的预先指定值提供了一个质量区域。也就是说,将基于质量范围的抽样方案设计的逐点描述引入一种称为质量区域的新方法。设计/方法/方法该方法基于五个阶段,它们是(1)操作程序,(2)批次接受概率的推导,(3)给定可接受质量水平(AQL)和限制质量水平(LQL)的构建计划,(4)BT-SGChSP质量区间的构建和(5)抽样计划的选择。结果表明,BT-SGChSP的运行特征曲线比现有的贝叶斯群链抽样方案更为理想,因为对于相同的消费者和生产者风险,BT-SGChSP的质量区域给出的缺陷比例更小。研究局限性/启示本研究存在四个局限性:首先是在推导批次接受概率时使用二项分布。或者,它可以通过使用泊松分布、加权泊松分布和加权二项式分布来推导。二是使用beta分布作为先验分布。否则,可以使用不同的先验分布,如:瑞利,指数和广义指数。第三,我们采用均值作为质量参数,而中位数和其他五分位数可以使用。第四,本文考虑了概率质量区域(PQR)和无差异质量区域(IQR)。实际意义提出的计划是传统的仅基于当前批次信息的组链抽样计划的替代方案。该计划考虑当前批号信息与之前和之后的批号,也考虑产品的先前信息。原创性/价值本文首次使用严格的(三个接受标准),并引入BT-SGChSP来寻找生产者和消费者风险的质量区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian two-sided group chain sampling plan for beta binomial distribution under quality regions
PurposeThis paper introduces a Bayesian two-sided group chain sampling plan (BT-SGChSP) by using binomial distribution to estimate the average proportion of defectives. In this Bayesian approach, beta distribution is used as a suitable prior of binomial distribution. The proposed plan considers both consumer's and producer's risks. Currently, group chain sampling plans only consider the consumer's risk and do not account for the producer's risk. All existing plans are used to estimate only a single point, but this plan gives a quality region for the pre-specified values of different design parameters. In other words, instead of point wise description for the designing of sampling plan based on a range of quality by involving a novel approach called quality region.Design/methodology/approachThe methodology is based on five phases, which are (1) operating procedure, (2) derivation of the probability of lot acceptance, (3) constructing plans for given acceptable quality level (AQL) and limiting quality level (LQL), (4) construction of quality intervals for BT-SGChSP and (5) selection of the sampling plans.FindingsThe findings show that the operating characteristic (OC) curve of BT-SGChSP is more ideal than the existing Bayesian group chain sampling plan because the quality regions for BT-SGChSP give less proportion of defectives for same consumer's and producer's risks.Research limitations/implicationsThere are four limitations in this study: first is the use of binomial distribution when deriving the probability of lot acceptance. Alternatively, it can be derived by using distributions such as Poisson, weighted Poisson and weighted binomial. The second is that beta distribution is used as prior distribution. Otherwise, different prior distributions can be used like: Rayleigh, exponential and generalized exponential. The third is that we adopt mean as a quality parameter, whereas median and other quintiles can be used. Forth, this paper considers probabilistic quality region (PQR) and indifference quality region (IQR).Practical implicationsThe proposed plan is an alternative of traditional group chain sampling plans that are based on only current lot information. This plan considers current lot information with preceding and succeeding lot and also considers prior information of the product.Originality/valueThis paper first time uses a tight (three acceptance criteria) and introduces a BT-SGChSP to find quality regions for both producer's and consumer's risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
12.00%
发文量
53
期刊介绍: In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining
期刊最新文献
Appraise the role of novelty-seeking on consumers’ satisfaction using online food delivery applications The influence of library service quality, library image, place, personal control and trust on loyalty: the mediating role of perceived service value and satisfaction The impact of quality on health-insurance users' satisfaction in Saudi Arabia: the mediating role of brand image and utilitarian value Proposal of a facilitating methodology for fuzzy FMEA implementation with application in process risk analysis in the aeronautical sector Critical failure factors for Quality 4.0: an exploratory qualitative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1