C. Lapalme, C. Spence, D. Costa, B. Bonsal, Jordan L. Musetta-Lambert, Yalda Fazli
{"title":"将水文地球化学纳入永久冻土环境的模拟:对最近的建议、考虑和文献的回顾","authors":"C. Lapalme, C. Spence, D. Costa, B. Bonsal, Jordan L. Musetta-Lambert, Yalda Fazli","doi":"10.1139/as-2022-0038","DOIUrl":null,"url":null,"abstract":"This study is a meta-analysis of recent global research articles on hydrogeochemical modelling of permafrost regions to determine trends and consensus on research gaps and future research directions. The hydrogeochemical response of permafrost to climate change remains challenging to estimate and forecast despite evidence of large-scale impacts on freshwater and ecological cycles. We investigate the feasibility, need, and potential for hydrogeochemical modelling of permafrost landscapes by reviewing recommendations from previous modelling, review, and primer papers, including discussing ways to advance this type of modelling science. Key permafrost hydrogeochemical processes are discussed, including heat transfer and associated freeze–thaw regimes, biogeochemical processes and rates, and surface and subsurface flow. Modelling considerations (i.e., model dimension, scale, heterogeneity, and permafrost zonation) and model parameters are subsequently examined. Finally, limitations and additional considerations for advancing permafrost hydrogeochemical modelling efforts are reviewed. The findings of this review are summarized in recommendations, tables, and two schematics incorporating key considerations for future hydrogeochemical modelling initiatives in permafrost environments.","PeriodicalId":48575,"journal":{"name":"Arctic Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards the incorporation of hydrogeochemistry into the modelling of permafrost environments: a review of recent recommendations, considerations, and literature\",\"authors\":\"C. Lapalme, C. Spence, D. Costa, B. Bonsal, Jordan L. Musetta-Lambert, Yalda Fazli\",\"doi\":\"10.1139/as-2022-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is a meta-analysis of recent global research articles on hydrogeochemical modelling of permafrost regions to determine trends and consensus on research gaps and future research directions. The hydrogeochemical response of permafrost to climate change remains challenging to estimate and forecast despite evidence of large-scale impacts on freshwater and ecological cycles. We investigate the feasibility, need, and potential for hydrogeochemical modelling of permafrost landscapes by reviewing recommendations from previous modelling, review, and primer papers, including discussing ways to advance this type of modelling science. Key permafrost hydrogeochemical processes are discussed, including heat transfer and associated freeze–thaw regimes, biogeochemical processes and rates, and surface and subsurface flow. Modelling considerations (i.e., model dimension, scale, heterogeneity, and permafrost zonation) and model parameters are subsequently examined. Finally, limitations and additional considerations for advancing permafrost hydrogeochemical modelling efforts are reviewed. The findings of this review are summarized in recommendations, tables, and two schematics incorporating key considerations for future hydrogeochemical modelling initiatives in permafrost environments.\",\"PeriodicalId\":48575,\"journal\":{\"name\":\"Arctic Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arctic Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/as-2022-0038\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/as-2022-0038","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Towards the incorporation of hydrogeochemistry into the modelling of permafrost environments: a review of recent recommendations, considerations, and literature
This study is a meta-analysis of recent global research articles on hydrogeochemical modelling of permafrost regions to determine trends and consensus on research gaps and future research directions. The hydrogeochemical response of permafrost to climate change remains challenging to estimate and forecast despite evidence of large-scale impacts on freshwater and ecological cycles. We investigate the feasibility, need, and potential for hydrogeochemical modelling of permafrost landscapes by reviewing recommendations from previous modelling, review, and primer papers, including discussing ways to advance this type of modelling science. Key permafrost hydrogeochemical processes are discussed, including heat transfer and associated freeze–thaw regimes, biogeochemical processes and rates, and surface and subsurface flow. Modelling considerations (i.e., model dimension, scale, heterogeneity, and permafrost zonation) and model parameters are subsequently examined. Finally, limitations and additional considerations for advancing permafrost hydrogeochemical modelling efforts are reviewed. The findings of this review are summarized in recommendations, tables, and two schematics incorporating key considerations for future hydrogeochemical modelling initiatives in permafrost environments.
Arctic ScienceAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
5.00
自引率
12.10%
发文量
81
期刊介绍:
Arctic Science is an interdisciplinary journal that publishes original peer-reviewed research from all areas of natural science and applied science & engineering related to northern Polar Regions. The focus on basic and applied science includes the traditional knowledge and observations of the indigenous peoples of the region as well as cutting-edge developments in biological, chemical, physical and engineering science in all northern environments. Reports on interdisciplinary research are encouraged. Special issues and sections dealing with important issues in northern polar science are also considered.