{"title":"弹性薄膜轴对称剥落:微扰解","authors":"E. Chen, Zhaohe Dai","doi":"10.1115/1.4062831","DOIUrl":null,"url":null,"abstract":"\n We study the mechanical behavior of a thin elastic film that is affixed to a rigid substrate and subjected to a transverse force using a shaft with a finite radius. This scenario, also referred to as axisymmetric peeling, is encountered frequently in conventional blister tests as well as in our daily lives when removing an adhesive film from a substrate. Our primary objective is to gain a quantitative understanding of how the shaft's radius influences the relationships between force and displacement, as well as between force and delamination areas. These relationships can serve as a dependable method to determine both the film's elastic modulus and the adhesion strength between the film and its substrate. In this work, we provide a simple perturbation solution to this geometrically nonlinear problem while avoiding any use of ad hoc assumptions that were previously required in the literature. As a result, our results are in excellent agreement with numerical simulations and offer improved accuracy compared to analytical solutions available in the literature.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Axisymmetric peeling of thin elastic films: A perturbation solution\",\"authors\":\"E. Chen, Zhaohe Dai\",\"doi\":\"10.1115/1.4062831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study the mechanical behavior of a thin elastic film that is affixed to a rigid substrate and subjected to a transverse force using a shaft with a finite radius. This scenario, also referred to as axisymmetric peeling, is encountered frequently in conventional blister tests as well as in our daily lives when removing an adhesive film from a substrate. Our primary objective is to gain a quantitative understanding of how the shaft's radius influences the relationships between force and displacement, as well as between force and delamination areas. These relationships can serve as a dependable method to determine both the film's elastic modulus and the adhesion strength between the film and its substrate. In this work, we provide a simple perturbation solution to this geometrically nonlinear problem while avoiding any use of ad hoc assumptions that were previously required in the literature. As a result, our results are in excellent agreement with numerical simulations and offer improved accuracy compared to analytical solutions available in the literature.\",\"PeriodicalId\":54880,\"journal\":{\"name\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062831\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062831","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Axisymmetric peeling of thin elastic films: A perturbation solution
We study the mechanical behavior of a thin elastic film that is affixed to a rigid substrate and subjected to a transverse force using a shaft with a finite radius. This scenario, also referred to as axisymmetric peeling, is encountered frequently in conventional blister tests as well as in our daily lives when removing an adhesive film from a substrate. Our primary objective is to gain a quantitative understanding of how the shaft's radius influences the relationships between force and displacement, as well as between force and delamination areas. These relationships can serve as a dependable method to determine both the film's elastic modulus and the adhesion strength between the film and its substrate. In this work, we provide a simple perturbation solution to this geometrically nonlinear problem while avoiding any use of ad hoc assumptions that were previously required in the literature. As a result, our results are in excellent agreement with numerical simulations and offer improved accuracy compared to analytical solutions available in the literature.
期刊介绍:
All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation