基性侵入记录了美国加利福尼亚州东部内华达山脉岩基的地幔输入和地壳厚度

IF 3.9 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geological Society of America Bulletin Pub Date : 2023-08-29 DOI:10.1130/b36646.1
Madeleine J. Lewis, J. Ryan‐Davis, C. Bucholz
{"title":"基性侵入记录了美国加利福尼亚州东部内华达山脉岩基的地幔输入和地壳厚度","authors":"Madeleine J. Lewis, J. Ryan‐Davis, C. Bucholz","doi":"10.1130/b36646.1","DOIUrl":null,"url":null,"abstract":"Contributions of heat and/or mass from mafic magmas are commonly invoked in models of voluminous granodiorite and andesite generation in magmatic and volcanic arcs worldwide. However, mafic intrusions are a volumetrically minor component in most arc batholiths. This is the case in the Sierra Nevada batholith, California, USA, where gabbro and diorite plutons are smaller and less abundant than the granitoid suites that make up the bulk of the batholith. Here, we constrain the timing and geochemistry of mafic intrusions in the Sierra Nevada batholith to assess the role of these compositions in arc batholith construction. Previous detailed studies on a limited number of mafic intrusions demonstrate that they formed penecontemporaneously with the felsic batholith, but there is a need for a broader survey of mafic plutons using modern geochronological techniques. New U-Pb zircon ages for 13 gabbro to diorite plutons and geochemistry from 17 mafic intrusions in the eastern Sierra Nevada batholith document two main episodes of mafic magmatism in the eastern Sierra Nevada batholith, from 168 Ma to 145 Ma and from 100 Ma to 89 Ma. These episodes overlap with the ages of granitoid plutons in the eastern Sierra Nevada batholith, including the Late Jurassic Palisade Crest and Late Cretaceous John Muir intrusive suites, in addition to other felsic plutons dated in the eastern Sierra Nevada batholith. Non-primitive mineral compositions in the mafic bodies indicate that their parental magmas are the evolved products of mantle-derived basalts that first differentiated in the lower crust prior to ascent and crystallization in the upper crust. The presence of rocks with cumulate textures, as well as a wide range of bulk-rock compositions (SiO2 wt% 38−64, Mg# 39−74), show that magmatic differentiation continued within each mafic body after intrusion into the upper crust. Sr/Y ratios in melt-like (i.e., non-cumulate) mafic samples suggest that the crustal thickness of the Sierra Nevada batholith was roughly 30 km in the Early Jurassic and increased to ∼44 km by the Late Cretaceous. Concomitant intrusion of mafic melts along with voluminous granitoid plutons supports mantle melting as a major contributor of heat and magmatic volumes to the crust during construction of the eastern Sierra Nevada batholith.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mafic intrusions record mantle inputs and crustal thickness in the eastern Sierra Nevada batholith, California, USA\",\"authors\":\"Madeleine J. Lewis, J. Ryan‐Davis, C. Bucholz\",\"doi\":\"10.1130/b36646.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contributions of heat and/or mass from mafic magmas are commonly invoked in models of voluminous granodiorite and andesite generation in magmatic and volcanic arcs worldwide. However, mafic intrusions are a volumetrically minor component in most arc batholiths. This is the case in the Sierra Nevada batholith, California, USA, where gabbro and diorite plutons are smaller and less abundant than the granitoid suites that make up the bulk of the batholith. Here, we constrain the timing and geochemistry of mafic intrusions in the Sierra Nevada batholith to assess the role of these compositions in arc batholith construction. Previous detailed studies on a limited number of mafic intrusions demonstrate that they formed penecontemporaneously with the felsic batholith, but there is a need for a broader survey of mafic plutons using modern geochronological techniques. New U-Pb zircon ages for 13 gabbro to diorite plutons and geochemistry from 17 mafic intrusions in the eastern Sierra Nevada batholith document two main episodes of mafic magmatism in the eastern Sierra Nevada batholith, from 168 Ma to 145 Ma and from 100 Ma to 89 Ma. These episodes overlap with the ages of granitoid plutons in the eastern Sierra Nevada batholith, including the Late Jurassic Palisade Crest and Late Cretaceous John Muir intrusive suites, in addition to other felsic plutons dated in the eastern Sierra Nevada batholith. Non-primitive mineral compositions in the mafic bodies indicate that their parental magmas are the evolved products of mantle-derived basalts that first differentiated in the lower crust prior to ascent and crystallization in the upper crust. The presence of rocks with cumulate textures, as well as a wide range of bulk-rock compositions (SiO2 wt% 38−64, Mg# 39−74), show that magmatic differentiation continued within each mafic body after intrusion into the upper crust. Sr/Y ratios in melt-like (i.e., non-cumulate) mafic samples suggest that the crustal thickness of the Sierra Nevada batholith was roughly 30 km in the Early Jurassic and increased to ∼44 km by the Late Cretaceous. Concomitant intrusion of mafic melts along with voluminous granitoid plutons supports mantle melting as a major contributor of heat and magmatic volumes to the crust during construction of the eastern Sierra Nevada batholith.\",\"PeriodicalId\":55104,\"journal\":{\"name\":\"Geological Society of America Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Society of America Bulletin\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/b36646.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/b36646.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镁铁质岩浆的热量和/或质量贡献通常在世界各地岩浆弧和火山弧中大量花岗闪长岩和安山岩生成的模型中被引用。然而,镁铁质侵入体在大多数弧岩基中是体积较小的成分。这是美国加利福尼亚州内华达山脉岩基的情况,那里的辉长岩和闪长岩深成岩体比构成岩基大部分的花岗质岩组更小,数量更少。在这里,我们限制了内华达山脉岩基中镁铁质侵入体的时间和地球化学,以评估这些成分在弧岩基构造中的作用。先前对数量有限的镁铁质侵入体的详细研究表明,它们与长英质岩基准同期形成,但需要使用现代地质年代技术对镁铁质深成岩体进行更广泛的调查。内华达山脉东部岩基中13个辉长岩至闪长岩深成岩体的新U-Pb锆石年龄和17个镁铁质侵入体的地球化学记录了内华达山脉东部岩基中镁铁质岩浆作用的两个主要阶段,分别为168 Ma至145 Ma和100 Ma至89 Ma,包括晚侏罗纪Palisade Crest和晚白垩世John Muir侵入岩套,以及内华达山脉东部岩基中的其他长英质深成岩体。镁铁质岩体中的非原始矿物成分表明,它们的母岩浆是地幔衍生玄武岩的演化产物,这些玄武岩在上地壳上升和结晶之前首先在下地壳中分化。具有堆积结构的岩石以及广泛的大块岩石成分(SiO2 wt%38−64,Mg#39−74)的存在表明,侵入上地壳后,每个镁铁质体内的岩浆分化仍在继续。熔融(即非堆积)镁铁质样品中的Sr/Y比率表明,内华达山脉岩基的地壳厚度在早侏罗世约为30km,到晚白垩世增加至~44km。镁铁质熔体与大量花岗岩类深成岩体的伴生侵入支持地幔熔融,这是内华达山脉东部岩基建造期间地壳热量和岩浆量的主要贡献者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mafic intrusions record mantle inputs and crustal thickness in the eastern Sierra Nevada batholith, California, USA
Contributions of heat and/or mass from mafic magmas are commonly invoked in models of voluminous granodiorite and andesite generation in magmatic and volcanic arcs worldwide. However, mafic intrusions are a volumetrically minor component in most arc batholiths. This is the case in the Sierra Nevada batholith, California, USA, where gabbro and diorite plutons are smaller and less abundant than the granitoid suites that make up the bulk of the batholith. Here, we constrain the timing and geochemistry of mafic intrusions in the Sierra Nevada batholith to assess the role of these compositions in arc batholith construction. Previous detailed studies on a limited number of mafic intrusions demonstrate that they formed penecontemporaneously with the felsic batholith, but there is a need for a broader survey of mafic plutons using modern geochronological techniques. New U-Pb zircon ages for 13 gabbro to diorite plutons and geochemistry from 17 mafic intrusions in the eastern Sierra Nevada batholith document two main episodes of mafic magmatism in the eastern Sierra Nevada batholith, from 168 Ma to 145 Ma and from 100 Ma to 89 Ma. These episodes overlap with the ages of granitoid plutons in the eastern Sierra Nevada batholith, including the Late Jurassic Palisade Crest and Late Cretaceous John Muir intrusive suites, in addition to other felsic plutons dated in the eastern Sierra Nevada batholith. Non-primitive mineral compositions in the mafic bodies indicate that their parental magmas are the evolved products of mantle-derived basalts that first differentiated in the lower crust prior to ascent and crystallization in the upper crust. The presence of rocks with cumulate textures, as well as a wide range of bulk-rock compositions (SiO2 wt% 38−64, Mg# 39−74), show that magmatic differentiation continued within each mafic body after intrusion into the upper crust. Sr/Y ratios in melt-like (i.e., non-cumulate) mafic samples suggest that the crustal thickness of the Sierra Nevada batholith was roughly 30 km in the Early Jurassic and increased to ∼44 km by the Late Cretaceous. Concomitant intrusion of mafic melts along with voluminous granitoid plutons supports mantle melting as a major contributor of heat and magmatic volumes to the crust during construction of the eastern Sierra Nevada batholith.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geological Society of America Bulletin
Geological Society of America Bulletin 地学-地球科学综合
CiteScore
9.30
自引率
8.20%
发文量
159
审稿时长
4-8 weeks
期刊介绍: The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.
期刊最新文献
Pervasive Neoarchean melting of subducted sediments generating sanukitoid and associated magmatism in the North China Craton, with implications for the operation of plate tectonics Metamorphic evolution of high-pressure and ultrahigh-temperature granulites from the Alxa Block, North China Craton: Implications for the collision and exhumation of Paleoproterozoic orogenic belts Ordovician−Early Devonian granitic magmatism as the consequence of intracontinental orogenic activity along the Qinhang belt in South China Origin of Early Cretaceous mafic volcanic rocks from the Erlian Basin west of the Great Xing’an Range of North China: Implications for the tectono-magmatic evolution of East Asia Permian−Triassic magmatism above a slab window in the Eastern Tianshan: Implications for the evolution of the southern Altaids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1