{"title":"多二次拟插值与直线法相结合的广义Burgers-Huxley方程数值研究","authors":"M. Askari, H. Adibi","doi":"10.22034/CMDE.2021.44511.1885","DOIUrl":null,"url":null,"abstract":"In this article, an efficient method for approximate the solution of the generalized Burgers-Huxley (gB-H) equation using multiquadric quasi-interpolation approach is considered. This method consists of two phases. First, the spatial derivatives are evaluated by MQ quasi-interpolation, So the gB-H equation is reduces to a nonlinear system of ordinary differential equations. In phase two, the obtained system is solved by using ODE solvers. Numerical examples demonstrate the validity and applicability of the method.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of the generalized Burgers-Huxley equation using combination of multiquadric quasi-interpolation and method of lines\",\"authors\":\"M. Askari, H. Adibi\",\"doi\":\"10.22034/CMDE.2021.44511.1885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an efficient method for approximate the solution of the generalized Burgers-Huxley (gB-H) equation using multiquadric quasi-interpolation approach is considered. This method consists of two phases. First, the spatial derivatives are evaluated by MQ quasi-interpolation, So the gB-H equation is reduces to a nonlinear system of ordinary differential equations. In phase two, the obtained system is solved by using ODE solvers. Numerical examples demonstrate the validity and applicability of the method.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.44511.1885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.44511.1885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical investigation of the generalized Burgers-Huxley equation using combination of multiquadric quasi-interpolation and method of lines
In this article, an efficient method for approximate the solution of the generalized Burgers-Huxley (gB-H) equation using multiquadric quasi-interpolation approach is considered. This method consists of two phases. First, the spatial derivatives are evaluated by MQ quasi-interpolation, So the gB-H equation is reduces to a nonlinear system of ordinary differential equations. In phase two, the obtained system is solved by using ODE solvers. Numerical examples demonstrate the validity and applicability of the method.