微流控多孔介质中重复两相流体流动时孔隙尺度非均质性及流速影响的研究

IF 1.9 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Petroleum Geoscience Pub Date : 2021-01-26 DOI:10.1144/petgeo2020-062
Jingtao Zhang, Haipeng Zhang, Donghee Lee, S. Ryu, Seunghee Kim
{"title":"微流控多孔介质中重复两相流体流动时孔隙尺度非均质性及流速影响的研究","authors":"Jingtao Zhang, Haipeng Zhang, Donghee Lee, S. Ryu, Seunghee Kim","doi":"10.1144/petgeo2020-062","DOIUrl":null,"url":null,"abstract":"Various energy recovery, storage, conversion and environmental operations may involve repetitive fluid injection and thus, cyclic drainage–imbibition processes. We conducted an experimental study for which polydimethylsiloxane (PDMS)-based micromodels were fabricated with three different levels of pore-space heterogeneity (coefficient of variation, where COV  =  0, 0.25 and 0.5) to represent consolidated and/or partially consolidated sandstones. A total of 10 injection-withdrawal cycles were applied to each micromodel at two different flow rates (0.01 and 0.1 ml min−1). The experimental results were analysed in terms of flow morphology, sweep efficiency, residual saturation, the connection of fluids and the pressure gradient. The pattern of the invasion and displacement of the non-wetting fluid converged more readily in the homogeneous model (COV  =  0) as the repetitive drainage–imbibition process continued. The overall sweep efficiency converged between 0.4 and 0.6 at all tested flow rates, regardless of different flow rates and COV in this study. In contrast, the effective sweep efficiency was observed to increase with higher COV at the lower flow rate, while that trend became reversed at the higher flow rate. Similarly, the residual saturation of the non-wetting fluid was largest at COV  =  0 for the lower flow rate, but it was the opposite for the higher flow-rate case. However, the Minkowski functionals for the boundary length and connectedness of the non-wetting fluid remained quite constant during repetitive fluid flow. Implications of the study results for porous media-compressed air energy storage (PM-CAES) are discussed as a complementary analysis at the end of this paper. Supplementary material: Figures showing the distribution of water (Fig. S1) and oil (Fig. S2) at the end of each drainage and imbibition step in different microfluidic pore-network models are available at https://doi.org/10.6084/m9.figshare.c.5276814 Thematic collection: This article is part of the Energy Geoscience Series available at: https://www.lyellcollection.org/cc/energy-geoscience-series","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Study on the effect of pore-scale heterogeneity and flow rate during repetitive two-phase fluid flow in microfluidic porous media\",\"authors\":\"Jingtao Zhang, Haipeng Zhang, Donghee Lee, S. Ryu, Seunghee Kim\",\"doi\":\"10.1144/petgeo2020-062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various energy recovery, storage, conversion and environmental operations may involve repetitive fluid injection and thus, cyclic drainage–imbibition processes. We conducted an experimental study for which polydimethylsiloxane (PDMS)-based micromodels were fabricated with three different levels of pore-space heterogeneity (coefficient of variation, where COV  =  0, 0.25 and 0.5) to represent consolidated and/or partially consolidated sandstones. A total of 10 injection-withdrawal cycles were applied to each micromodel at two different flow rates (0.01 and 0.1 ml min−1). The experimental results were analysed in terms of flow morphology, sweep efficiency, residual saturation, the connection of fluids and the pressure gradient. The pattern of the invasion and displacement of the non-wetting fluid converged more readily in the homogeneous model (COV  =  0) as the repetitive drainage–imbibition process continued. The overall sweep efficiency converged between 0.4 and 0.6 at all tested flow rates, regardless of different flow rates and COV in this study. In contrast, the effective sweep efficiency was observed to increase with higher COV at the lower flow rate, while that trend became reversed at the higher flow rate. Similarly, the residual saturation of the non-wetting fluid was largest at COV  =  0 for the lower flow rate, but it was the opposite for the higher flow-rate case. However, the Minkowski functionals for the boundary length and connectedness of the non-wetting fluid remained quite constant during repetitive fluid flow. Implications of the study results for porous media-compressed air energy storage (PM-CAES) are discussed as a complementary analysis at the end of this paper. Supplementary material: Figures showing the distribution of water (Fig. S1) and oil (Fig. S2) at the end of each drainage and imbibition step in different microfluidic pore-network models are available at https://doi.org/10.6084/m9.figshare.c.5276814 Thematic collection: This article is part of the Energy Geoscience Series available at: https://www.lyellcollection.org/cc/energy-geoscience-series\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2020-062\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2020-062","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

各种能量回收、储存、转换和环境操作可能涉及重复的流体注入,从而涉及循环排水吸胀过程。我们进行了一项实验研究,基于聚二甲基硅氧烷(PDMS)的微模型具有三种不同水平的孔隙空间非均质性(变异系数,其中COV = 0, 0.25和0.5)来代表固结和/或部分固结的砂岩。在两种不同的流速(0.01和0.1 ml min - 1)下,每个微模型共进行10个注射-退出周期。从流动形态、波及效率、残余饱和度、流体连通性和压力梯度等方面对实验结果进行了分析。随着重复排吸过程的继续,非润湿流体的侵入和驱替模式更容易在均匀模型(COV = 0)中收敛。在本研究中,无论不同的流量和冠状病毒,在所有测试流量下,总波及效率都收敛在0.4 ~ 0.6之间。相比之下,在低流量下,有效波及效率随冠状病毒数的增加而增加,而在高流量下,这一趋势则相反。同样,当COV = 0时,低流量下非润湿流体的剩余饱和度最大,高流量下则相反。然而,非润湿流体的边界长度和连通性的Minkowski泛函在重复流体流动中保持相当恒定。本文最后对多孔介质压缩空气储能(PM-CAES)的研究结果进行了补充分析。补充资料:不同微流体孔隙网络模型中每个排水和渗吸阶段结束时的水(图S1)和油(图S2)分布图可在https://doi.org/10.6084/m9.figshare.c.5276814上找到。专题合集:这篇文章是能源地球科学系列的一部分,可在https://www.lyellcollection.org/cc/energy-geoscience-series上找到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the effect of pore-scale heterogeneity and flow rate during repetitive two-phase fluid flow in microfluidic porous media
Various energy recovery, storage, conversion and environmental operations may involve repetitive fluid injection and thus, cyclic drainage–imbibition processes. We conducted an experimental study for which polydimethylsiloxane (PDMS)-based micromodels were fabricated with three different levels of pore-space heterogeneity (coefficient of variation, where COV  =  0, 0.25 and 0.5) to represent consolidated and/or partially consolidated sandstones. A total of 10 injection-withdrawal cycles were applied to each micromodel at two different flow rates (0.01 and 0.1 ml min−1). The experimental results were analysed in terms of flow morphology, sweep efficiency, residual saturation, the connection of fluids and the pressure gradient. The pattern of the invasion and displacement of the non-wetting fluid converged more readily in the homogeneous model (COV  =  0) as the repetitive drainage–imbibition process continued. The overall sweep efficiency converged between 0.4 and 0.6 at all tested flow rates, regardless of different flow rates and COV in this study. In contrast, the effective sweep efficiency was observed to increase with higher COV at the lower flow rate, while that trend became reversed at the higher flow rate. Similarly, the residual saturation of the non-wetting fluid was largest at COV  =  0 for the lower flow rate, but it was the opposite for the higher flow-rate case. However, the Minkowski functionals for the boundary length and connectedness of the non-wetting fluid remained quite constant during repetitive fluid flow. Implications of the study results for porous media-compressed air energy storage (PM-CAES) are discussed as a complementary analysis at the end of this paper. Supplementary material: Figures showing the distribution of water (Fig. S1) and oil (Fig. S2) at the end of each drainage and imbibition step in different microfluidic pore-network models are available at https://doi.org/10.6084/m9.figshare.c.5276814 Thematic collection: This article is part of the Energy Geoscience Series available at: https://www.lyellcollection.org/cc/energy-geoscience-series
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Geoscience
Petroleum Geoscience 地学-地球科学综合
CiteScore
4.80
自引率
11.80%
发文量
28
审稿时长
>12 weeks
期刊介绍: Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE). Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership. Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.
期刊最新文献
The influence of sedimentary facies, mineralogy, and diagenesis on reservoir properties of the coal-bearing Upper Carboniferous of NW Germany Natural fractures at depth in shale reservoirs: new insights from the southern Sichuan Basin marine shales Petrographic and Petrophysical Characterization of Pre-salt Aptian Carbonate Reservoirs from The Santos Basin, Brazil Simultaneous Well Spacing and Completion Optimization Using Automated Machine Learning Approach. A Case Study of Marcellus Shale Reservoir in the North-Eastern United States Assessing the impact of hydrodynamics on capillary seal capacity: application of the Manzocchi & Childs model in trap analysis workflows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1