{"title":"Fibonacci-Cayley树上神经网络的复杂性","authors":"Jung-Chao Ban, Chih-Hung Chang","doi":"10.13069/JACODESMATH.560410","DOIUrl":null,"url":null,"abstract":"This paper investigates the coloring problem on Fibonacci-Cayley tree, which is a Cayley graph whose vertex set is the Fibonacci sequence. More precisely, we elucidate the complexity of shifts of finite type defined on Fibonacci-Cayley tree via an invariant called entropy. We demonstrate that computing the entropy of a Fibonacci tree-shift of finite type is equivalent to studying a nonlinear recursive system and reveal an algorithm for the computation. What is more, the entropy of a Fibonacci tree-shift of finite type is the logarithm of the spectral radius of its corresponding matrix. We apply the result to neural networks defined on Fibonacci-Cayley tree, which reflect those neural systems with neuronal dysfunction. Aside from demonstrating a surprising phenomenon that there are only two possibilities of entropy for neural networks on Fibonacci-Cayley tree, we address the formula of the boundary in the parameter space.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complexity of neural networks on Fibonacci-Cayley tree\",\"authors\":\"Jung-Chao Ban, Chih-Hung Chang\",\"doi\":\"10.13069/JACODESMATH.560410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the coloring problem on Fibonacci-Cayley tree, which is a Cayley graph whose vertex set is the Fibonacci sequence. More precisely, we elucidate the complexity of shifts of finite type defined on Fibonacci-Cayley tree via an invariant called entropy. We demonstrate that computing the entropy of a Fibonacci tree-shift of finite type is equivalent to studying a nonlinear recursive system and reveal an algorithm for the computation. What is more, the entropy of a Fibonacci tree-shift of finite type is the logarithm of the spectral radius of its corresponding matrix. We apply the result to neural networks defined on Fibonacci-Cayley tree, which reflect those neural systems with neuronal dysfunction. Aside from demonstrating a surprising phenomenon that there are only two possibilities of entropy for neural networks on Fibonacci-Cayley tree, we address the formula of the boundary in the parameter space.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/JACODESMATH.560410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.560410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Complexity of neural networks on Fibonacci-Cayley tree
This paper investigates the coloring problem on Fibonacci-Cayley tree, which is a Cayley graph whose vertex set is the Fibonacci sequence. More precisely, we elucidate the complexity of shifts of finite type defined on Fibonacci-Cayley tree via an invariant called entropy. We demonstrate that computing the entropy of a Fibonacci tree-shift of finite type is equivalent to studying a nonlinear recursive system and reveal an algorithm for the computation. What is more, the entropy of a Fibonacci tree-shift of finite type is the logarithm of the spectral radius of its corresponding matrix. We apply the result to neural networks defined on Fibonacci-Cayley tree, which reflect those neural systems with neuronal dysfunction. Aside from demonstrating a surprising phenomenon that there are only two possibilities of entropy for neural networks on Fibonacci-Cayley tree, we address the formula of the boundary in the parameter space.