{"title":"台球分散的热力学形式","authors":"V. Baladi, Mark F. Demers","doi":"10.3934/jmd.2022013","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>For any finite horizon Sinai billiard map <inline-formula><tex-math id=\"M1\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula> on the two-torus, we find <inline-formula><tex-math id=\"M2\">\\begin{document}$ t_*>1 $\\end{document}</tex-math></inline-formula> such that for each <inline-formula><tex-math id=\"M3\">\\begin{document}$ t\\in (0,t_*) $\\end{document}</tex-math></inline-formula> there exists a unique equilibrium state <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M5\">\\begin{document}$ - t\\log J^uT $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id=\"M7\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula>-adapted. (In particular, the SRB measure is the unique equilibrium state for <inline-formula><tex-math id=\"M8\">\\begin{document}$ - \\log J^uT $\\end{document}</tex-math></inline-formula>.) We show that <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula> is exponentially mixing for Hölder observables, and the pressure function <inline-formula><tex-math id=\"M10\">\\begin{document}$ P(t) = \\sup_\\mu \\{h_\\mu -\\int t\\log J^uT d \\mu\\} $\\end{document}</tex-math></inline-formula> is analytic on <inline-formula><tex-math id=\"M11\">\\begin{document}$ (0,t_*) $\\end{document}</tex-math></inline-formula>. In addition, <inline-formula><tex-math id=\"M12\">\\begin{document}$ P(t) $\\end{document}</tex-math></inline-formula> is strictly convex if and only if <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\log J^uT $\\end{document}</tex-math></inline-formula> is not <inline-formula><tex-math id=\"M14\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula>-a.e. cohomologous to a constant, while, if there exist <inline-formula><tex-math id=\"M15\">\\begin{document}$ t_a\\ne t_b $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M16\">\\begin{document}$ \\mu_{t_a} = \\mu_{t_b} $\\end{document}</tex-math></inline-formula>, then <inline-formula><tex-math id=\"M17\">\\begin{document}$ P(t) $\\end{document}</tex-math></inline-formula> is affine on <inline-formula><tex-math id=\"M18\">\\begin{document}$ (0,t_*) $\\end{document}</tex-math></inline-formula>. An additional sparse recurrence condition gives <inline-formula><tex-math id=\"M19\">\\begin{document}$ \\lim_{t\\downarrow 0} P(t) = P(0) $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Thermodynamic formalism for dispersing billiards\",\"authors\":\"V. Baladi, Mark F. Demers\",\"doi\":\"10.3934/jmd.2022013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>For any finite horizon Sinai billiard map <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ T $\\\\end{document}</tex-math></inline-formula> on the two-torus, we find <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ t_*>1 $\\\\end{document}</tex-math></inline-formula> such that for each <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ t\\\\in (0,t_*) $\\\\end{document}</tex-math></inline-formula> there exists a unique equilibrium state <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\mu_t $\\\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ - t\\\\log J^uT $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\mu_t $\\\\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ T $\\\\end{document}</tex-math></inline-formula>-adapted. (In particular, the SRB measure is the unique equilibrium state for <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ - \\\\log J^uT $\\\\end{document}</tex-math></inline-formula>.) We show that <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\mu_t $\\\\end{document}</tex-math></inline-formula> is exponentially mixing for Hölder observables, and the pressure function <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ P(t) = \\\\sup_\\\\mu \\\\{h_\\\\mu -\\\\int t\\\\log J^uT d \\\\mu\\\\} $\\\\end{document}</tex-math></inline-formula> is analytic on <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ (0,t_*) $\\\\end{document}</tex-math></inline-formula>. In addition, <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ P(t) $\\\\end{document}</tex-math></inline-formula> is strictly convex if and only if <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ \\\\log J^uT $\\\\end{document}</tex-math></inline-formula> is not <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ \\\\mu_t $\\\\end{document}</tex-math></inline-formula>-a.e. cohomologous to a constant, while, if there exist <inline-formula><tex-math id=\\\"M15\\\">\\\\begin{document}$ t_a\\\\ne t_b $\\\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\\\"M16\\\">\\\\begin{document}$ \\\\mu_{t_a} = \\\\mu_{t_b} $\\\\end{document}</tex-math></inline-formula>, then <inline-formula><tex-math id=\\\"M17\\\">\\\\begin{document}$ P(t) $\\\\end{document}</tex-math></inline-formula> is affine on <inline-formula><tex-math id=\\\"M18\\\">\\\\begin{document}$ (0,t_*) $\\\\end{document}</tex-math></inline-formula>. An additional sparse recurrence condition gives <inline-formula><tex-math id=\\\"M19\\\">\\\\begin{document}$ \\\\lim_{t\\\\downarrow 0} P(t) = P(0) $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2022013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For any finite horizon Sinai billiard map \begin{document}$ T $\end{document} on the two-torus, we find \begin{document}$ t_*>1 $\end{document} such that for each \begin{document}$ t\in (0,t_*) $\end{document} there exists a unique equilibrium state \begin{document}$ \mu_t $\end{document} for \begin{document}$ - t\log J^uT $\end{document}, and \begin{document}$ \mu_t $\end{document} is \begin{document}$ T $\end{document}-adapted. (In particular, the SRB measure is the unique equilibrium state for \begin{document}$ - \log J^uT $\end{document}.) We show that \begin{document}$ \mu_t $\end{document} is exponentially mixing for Hölder observables, and the pressure function \begin{document}$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $\end{document} is analytic on \begin{document}$ (0,t_*) $\end{document}. In addition, \begin{document}$ P(t) $\end{document} is strictly convex if and only if \begin{document}$ \log J^uT $\end{document} is not \begin{document}$ \mu_t $\end{document}-a.e. cohomologous to a constant, while, if there exist \begin{document}$ t_a\ne t_b $\end{document} with \begin{document}$ \mu_{t_a} = \mu_{t_b} $\end{document}, then \begin{document}$ P(t) $\end{document} is affine on \begin{document}$ (0,t_*) $\end{document}. An additional sparse recurrence condition gives \begin{document}$ \lim_{t\downarrow 0} P(t) = P(0) $\end{document}.