Youngbo Won, Donghyun Rim, R. Mistrick, W. Bahnfleth
{"title":"室内气流对上室紫外线杀菌照射(UVGI)系统灭活气溶胶严重急性呼吸系统综合征冠状病毒2型影响的CFD建模","authors":"Youngbo Won, Donghyun Rim, R. Mistrick, W. Bahnfleth","doi":"10.1080/23744731.2023.2247947","DOIUrl":null,"url":null,"abstract":"Ultraviolet germicidal irradiation (UVGI) systems inactivate microorganisms indoors. Upper-room UVGI systems use wall- or ceiling-mounted fixtures to create an air disinfection zone above the occupied zone. The performance of upper-room UVGI systems varies with indoor airflow patterns induced by mechanical ventilation and thermal plumes from indoor heat sources. Little information is available on the effects of ventilation strategies on upper-room UVGI system performance for the control of viral aerosols in occupied spaces. This study simulated the effects of ventilation system characteristics in an office space on the ability of an upper-room UVGI system to inactivate viral aerosols with UV-C susceptibility representative of coronaviruses. UVGI reduced viral aerosol concentration by two orders of magnitude relative to the concentration without UVGI. Air change rates and air distribution strategy (mixing vs. displacement) had notable effects on the effectiveness of the UVGI system. For mixing ventilation, as the recirculation airflow rate increased from 0 to 5.3 h−1 for a room volume of 108 m3 with a fixed outdoor air change rate of 0.7 h−1, UVGI inactivation increased by 96.7%. Mixing ventilation with 100% outdoor air of 0.7 h−1 yielded airborne virus inactivation that was double that of displacement ventilation, due to enhanced air mixing.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"29 1","pages":"719 - 729"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD modeling of room airflow effects on inactivation of aerosol SARS-CoV-2 by an upper-room ultraviolet germicidal irradiation (UVGI) system\",\"authors\":\"Youngbo Won, Donghyun Rim, R. Mistrick, W. Bahnfleth\",\"doi\":\"10.1080/23744731.2023.2247947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultraviolet germicidal irradiation (UVGI) systems inactivate microorganisms indoors. Upper-room UVGI systems use wall- or ceiling-mounted fixtures to create an air disinfection zone above the occupied zone. The performance of upper-room UVGI systems varies with indoor airflow patterns induced by mechanical ventilation and thermal plumes from indoor heat sources. Little information is available on the effects of ventilation strategies on upper-room UVGI system performance for the control of viral aerosols in occupied spaces. This study simulated the effects of ventilation system characteristics in an office space on the ability of an upper-room UVGI system to inactivate viral aerosols with UV-C susceptibility representative of coronaviruses. UVGI reduced viral aerosol concentration by two orders of magnitude relative to the concentration without UVGI. Air change rates and air distribution strategy (mixing vs. displacement) had notable effects on the effectiveness of the UVGI system. For mixing ventilation, as the recirculation airflow rate increased from 0 to 5.3 h−1 for a room volume of 108 m3 with a fixed outdoor air change rate of 0.7 h−1, UVGI inactivation increased by 96.7%. Mixing ventilation with 100% outdoor air of 0.7 h−1 yielded airborne virus inactivation that was double that of displacement ventilation, due to enhanced air mixing.\",\"PeriodicalId\":21556,\"journal\":{\"name\":\"Science and Technology for the Built Environment\",\"volume\":\"29 1\",\"pages\":\"719 - 729\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology for the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23744731.2023.2247947\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology for the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23744731.2023.2247947","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
CFD modeling of room airflow effects on inactivation of aerosol SARS-CoV-2 by an upper-room ultraviolet germicidal irradiation (UVGI) system
Ultraviolet germicidal irradiation (UVGI) systems inactivate microorganisms indoors. Upper-room UVGI systems use wall- or ceiling-mounted fixtures to create an air disinfection zone above the occupied zone. The performance of upper-room UVGI systems varies with indoor airflow patterns induced by mechanical ventilation and thermal plumes from indoor heat sources. Little information is available on the effects of ventilation strategies on upper-room UVGI system performance for the control of viral aerosols in occupied spaces. This study simulated the effects of ventilation system characteristics in an office space on the ability of an upper-room UVGI system to inactivate viral aerosols with UV-C susceptibility representative of coronaviruses. UVGI reduced viral aerosol concentration by two orders of magnitude relative to the concentration without UVGI. Air change rates and air distribution strategy (mixing vs. displacement) had notable effects on the effectiveness of the UVGI system. For mixing ventilation, as the recirculation airflow rate increased from 0 to 5.3 h−1 for a room volume of 108 m3 with a fixed outdoor air change rate of 0.7 h−1, UVGI inactivation increased by 96.7%. Mixing ventilation with 100% outdoor air of 0.7 h−1 yielded airborne virus inactivation that was double that of displacement ventilation, due to enhanced air mixing.
期刊介绍:
Science and Technology for the Built Environment (formerly HVAC&R Research) is ASHRAE’s archival research publication, offering comprehensive reporting of original research in science and technology related to the stationary and mobile built environment, including indoor environmental quality, thermodynamic and energy system dynamics, materials properties, refrigerants, renewable and traditional energy systems and related processes and concepts, integrated built environmental system design approaches and tools, simulation approaches and algorithms, building enclosure assemblies, and systems for minimizing and regulating space heating and cooling modes. The journal features review articles that critically assess existing literature and point out future research directions.