使用锁定红外热像仪恢复损坏的序列号(第一部分)

Q3 Chemistry Journal of Spectral Imaging Pub Date : 2019-11-18 DOI:10.1255/jsi.2019.a20
I. Unobe, L. Lau, J. Kalivas, R. Rodriguez, A. Sorensen
{"title":"使用锁定红外热像仪恢复损坏的序列号(第一部分)","authors":"I. Unobe, L. Lau, J. Kalivas, R. Rodriguez, A. Sorensen","doi":"10.1255/jsi.2019.a20","DOIUrl":null,"url":null,"abstract":"Infrared thermal imaging is an evolving approach useful in non-destructive evaluation of materials for industrial and\nresearch purposes. This study investigates the use of this method in combination with multivariate data analysis as an\nalternative to chemical etching; a destructive method currently used to recover defaced serial numbers stamped in metal.\nThis process involves several unique aspects, each of which works to overcome some pertinent challenges associated\nwith the recovery of defaced serial numbers. Infrared thermal imaging of metal surfaces provides thermal images sensitive\n to local differences in thermal conductivity of regions of plastic strain existing below a stamped number. These strains are\n created from stamping pressures distorting the atomic crystalline structure of the metal and extend to depths beneath the\nstamped number. These thermal differences are quite small and thus not readily visible from the raw thermal images of an\nirregular surface created by removing the stamped numbers. As such, further enhancement is usually needed to identify\nthe subtle variations. The multivariate data analysis method, principal component analysis, is used to enhance these subtle\nvariations and aid the recovery of the serial numbers. Multiple similarity measures are utilised to match recovered numbers\nto several numerical libraries, followed by application of various fusion rules to achieve consensus identification.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Restoration of defaced serial numbers using lock-in infrared thermography (Part I)\",\"authors\":\"I. Unobe, L. Lau, J. Kalivas, R. Rodriguez, A. Sorensen\",\"doi\":\"10.1255/jsi.2019.a20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared thermal imaging is an evolving approach useful in non-destructive evaluation of materials for industrial and\\nresearch purposes. This study investigates the use of this method in combination with multivariate data analysis as an\\nalternative to chemical etching; a destructive method currently used to recover defaced serial numbers stamped in metal.\\nThis process involves several unique aspects, each of which works to overcome some pertinent challenges associated\\nwith the recovery of defaced serial numbers. Infrared thermal imaging of metal surfaces provides thermal images sensitive\\n to local differences in thermal conductivity of regions of plastic strain existing below a stamped number. These strains are\\n created from stamping pressures distorting the atomic crystalline structure of the metal and extend to depths beneath the\\nstamped number. These thermal differences are quite small and thus not readily visible from the raw thermal images of an\\nirregular surface created by removing the stamped numbers. As such, further enhancement is usually needed to identify\\nthe subtle variations. The multivariate data analysis method, principal component analysis, is used to enhance these subtle\\nvariations and aid the recovery of the serial numbers. Multiple similarity measures are utilised to match recovered numbers\\nto several numerical libraries, followed by application of various fusion rules to achieve consensus identification.\",\"PeriodicalId\":37385,\"journal\":{\"name\":\"Journal of Spectral Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1255/jsi.2019.a20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2019.a20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1

摘要

红外热成像是一种不断发展的方法,可用于工业和搜索目的的材料无损评估。本研究调查了这种方法与多元数据分析相结合的使用,以替代化学蚀刻;一种破坏性的方法,目前用于恢复金属上的污损序列号。这一过程涉及几个独特的方面,每个方面都能克服与恢复污损序列号相关的一些相关挑战。金属表面的红外热成像提供了对存在于冲压数字以下的塑性应变区域的热导率的局部差异敏感的热图像。这些应变是由扭曲金属原子晶体结构的冲压压力产生的,并延伸到低于冲压数的深度。这些热差异非常小,因此从通过去除冲压数字而产生的不规则表面的原始热图像中不容易看到。因此,通常需要进一步的增强来识别细微的变化。多变量数据分析方法,主成分分析,用于增强这些子变量并帮助序列号的恢复。利用多个相似性度量将恢复的数字与几个数字库进行匹配,然后应用各种融合规则来实现一致性识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restoration of defaced serial numbers using lock-in infrared thermography (Part I)
Infrared thermal imaging is an evolving approach useful in non-destructive evaluation of materials for industrial and research purposes. This study investigates the use of this method in combination with multivariate data analysis as an alternative to chemical etching; a destructive method currently used to recover defaced serial numbers stamped in metal. This process involves several unique aspects, each of which works to overcome some pertinent challenges associated with the recovery of defaced serial numbers. Infrared thermal imaging of metal surfaces provides thermal images sensitive to local differences in thermal conductivity of regions of plastic strain existing below a stamped number. These strains are created from stamping pressures distorting the atomic crystalline structure of the metal and extend to depths beneath the stamped number. These thermal differences are quite small and thus not readily visible from the raw thermal images of an irregular surface created by removing the stamped numbers. As such, further enhancement is usually needed to identify the subtle variations. The multivariate data analysis method, principal component analysis, is used to enhance these subtle variations and aid the recovery of the serial numbers. Multiple similarity measures are utilised to match recovered numbers to several numerical libraries, followed by application of various fusion rules to achieve consensus identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
期刊最新文献
Estimation of pigment concentration in LDPE via in-line hyperspectral imaging and machine learning The hybrid approach—convolutional neural networks and expectation maximisation algorithm—for tomographic reconstruction of hyperspectral images Comparison of 2D and 3D semantic segmentation in urban areas using fused hyperspectral and lidar data Comparison of different illumination systems for moisture prediction in cereal bars using hyperspectral imaging technology Reflectance spectra and AVIRIS-NG airborne hyperspectral data analysis for mapping ultramafic rocks in igneous terrain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1