天气衍生工具简介

IF 5.4 3区 工程技术 Q2 ENERGY & FUELS Wiley Interdisciplinary Reviews-Energy and Environment Pub Date : 2021-11-18 DOI:10.1002/wene.426
Július Bemš, Caner Aydin
{"title":"天气衍生工具简介","authors":"Július Bemš, Caner Aydin","doi":"10.1002/wene.426","DOIUrl":null,"url":null,"abstract":"The weather is one of the factors that may have an impact on the countries' economies. There are two main hedging ways against unexpected weather conditions: weather derivatives and weather insurances. During the last two decades, companies started to use weather derivatives against weather issues, especially in the energy and agriculture sectors. Starting from weather derivatives' first launch, their transaction volumes at the exchange and over‐the‐counter markets have increased. In addition to the increasing dependency of the economies on the weather, providing the weather derivative contracts with a reasonable premium amount is another reason which helps to have this positive trend. Since weather derivatives have similar parameters and rules with classical financial derivatives, it is possible to use the same pricing approaches for financial and weather derivatives. Monte–Carlo simulation, based on random number generation, is one of the existing methods of pricing derivative contracts. A difference between simulated values and really occurred data is the base point of the expected payoff or price of the contract. The current article introduces weather derivatives and shows two different approaches to their pricing, where one of them requires deeper statistical analysis. Adding the statistical analysis into the consideration, defining the relation between each data value, helps to provide better estimation and less volatility. Having less volatility can provide more accurate estimations and reasonable prices that are affordable and desired by the companies.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Introduction to weather derivatives\",\"authors\":\"Július Bemš, Caner Aydin\",\"doi\":\"10.1002/wene.426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The weather is one of the factors that may have an impact on the countries' economies. There are two main hedging ways against unexpected weather conditions: weather derivatives and weather insurances. During the last two decades, companies started to use weather derivatives against weather issues, especially in the energy and agriculture sectors. Starting from weather derivatives' first launch, their transaction volumes at the exchange and over‐the‐counter markets have increased. In addition to the increasing dependency of the economies on the weather, providing the weather derivative contracts with a reasonable premium amount is another reason which helps to have this positive trend. Since weather derivatives have similar parameters and rules with classical financial derivatives, it is possible to use the same pricing approaches for financial and weather derivatives. Monte–Carlo simulation, based on random number generation, is one of the existing methods of pricing derivative contracts. A difference between simulated values and really occurred data is the base point of the expected payoff or price of the contract. The current article introduces weather derivatives and shows two different approaches to their pricing, where one of them requires deeper statistical analysis. Adding the statistical analysis into the consideration, defining the relation between each data value, helps to provide better estimation and less volatility. Having less volatility can provide more accurate estimations and reasonable prices that are affordable and desired by the companies.\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.426\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.426","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4

摘要

天气是可能对这些国家的经济产生影响的因素之一。针对意外天气状况,有两种主要的对冲方式:天气衍生品和天气保险。在过去的二十年里,公司开始使用天气衍生品来解决天气问题,尤其是在能源和农业部门。从天气衍生品首次推出开始,它们在交易所和场外市场的交易量就有所增加。除了经济体对天气的依赖性日益增加之外,为天气衍生品合同提供合理的溢价也是有助于形成这种积极趋势的另一个原因。由于天气衍生品与经典金融衍生品具有相似的参数和规则,因此可以对金融衍生品和天气衍生品使用相同的定价方法。基于随机数生成的蒙特卡罗模拟是现有的衍生品合约定价方法之一。模拟值和实际发生的数据之间的差异是合同预期回报或价格的基点。当前的文章介绍了天气衍生品,并展示了两种不同的定价方法,其中一种需要更深入的统计分析。在考虑中加入统计分析,定义每个数据值之间的关系,有助于提供更好的估计和更少的波动性。波动性较小可以提供更准确的估计和合理的价格,这些价格是公司能够负担得起和想要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introduction to weather derivatives
The weather is one of the factors that may have an impact on the countries' economies. There are two main hedging ways against unexpected weather conditions: weather derivatives and weather insurances. During the last two decades, companies started to use weather derivatives against weather issues, especially in the energy and agriculture sectors. Starting from weather derivatives' first launch, their transaction volumes at the exchange and over‐the‐counter markets have increased. In addition to the increasing dependency of the economies on the weather, providing the weather derivative contracts with a reasonable premium amount is another reason which helps to have this positive trend. Since weather derivatives have similar parameters and rules with classical financial derivatives, it is possible to use the same pricing approaches for financial and weather derivatives. Monte–Carlo simulation, based on random number generation, is one of the existing methods of pricing derivative contracts. A difference between simulated values and really occurred data is the base point of the expected payoff or price of the contract. The current article introduces weather derivatives and shows two different approaches to their pricing, where one of them requires deeper statistical analysis. Adding the statistical analysis into the consideration, defining the relation between each data value, helps to provide better estimation and less volatility. Having less volatility can provide more accurate estimations and reasonable prices that are affordable and desired by the companies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
3.30%
发文量
42
期刊介绍: Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact. Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.
期刊最新文献
Toward low‐carbon cities: A review of circular economy integration in urban waste management and its impact on carbon emissions Technical and economic challenges for floating offshore wind deployment in Italy and in the Mediterranean Sea Challenges and opportunities toward a sustainable bio‐based chemical sector in Europe An updated review and perspective on efficient hydrogen generation via solar thermal water splitting Recent trends and developments in protection systems for microgrids incorporating distributed generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1