{"title":"一个曲面有界的有限域中三维Dirichlet常调和和广义调和问题的概率解方法","authors":"Mamuli Zakradze, Badri Mamporia, Murman Kublashvili, Nana Koblishvili","doi":"10.1016/j.trmi.2018.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>The Dirichlet ordinary and generalized harmonic problems for some 3D finite domains are considered. The term “generalized” indicates that a boundary function has a finite number of first kind discontinuity curves. An algorithm of numerical solution by the method of probabilistic solution (MPS) is given, which in its turn is based on a computer simulation of the Wiener process. Since, in the case of 3D generalized problems there are none exact test problems, therefore, for such problems, the way of testing of our method is suggested. For examining and to illustrate the effectiveness and simplicity of the proposed method five numerical examples are considered on finding the electric field. In the role of domains are taken ellipsoidal, spherical and cylindrical domains and both the potential and strength of the field are calculated. Numerical results are presented.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 453-465"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.08.005","citationCount":"2","resultStr":"{\"title\":\"The method of probabilistic solution for 3D Dirichlet ordinary and generalized harmonic problems in finite domains bounded with one surface\",\"authors\":\"Mamuli Zakradze, Badri Mamporia, Murman Kublashvili, Nana Koblishvili\",\"doi\":\"10.1016/j.trmi.2018.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Dirichlet ordinary and generalized harmonic problems for some 3D finite domains are considered. The term “generalized” indicates that a boundary function has a finite number of first kind discontinuity curves. An algorithm of numerical solution by the method of probabilistic solution (MPS) is given, which in its turn is based on a computer simulation of the Wiener process. Since, in the case of 3D generalized problems there are none exact test problems, therefore, for such problems, the way of testing of our method is suggested. For examining and to illustrate the effectiveness and simplicity of the proposed method five numerical examples are considered on finding the electric field. In the role of domains are taken ellipsoidal, spherical and cylindrical domains and both the potential and strength of the field are calculated. Numerical results are presented.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 3\",\"pages\":\"Pages 453-465\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.08.005\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S234680921830103X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S234680921830103X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The method of probabilistic solution for 3D Dirichlet ordinary and generalized harmonic problems in finite domains bounded with one surface
The Dirichlet ordinary and generalized harmonic problems for some 3D finite domains are considered. The term “generalized” indicates that a boundary function has a finite number of first kind discontinuity curves. An algorithm of numerical solution by the method of probabilistic solution (MPS) is given, which in its turn is based on a computer simulation of the Wiener process. Since, in the case of 3D generalized problems there are none exact test problems, therefore, for such problems, the way of testing of our method is suggested. For examining and to illustrate the effectiveness and simplicity of the proposed method five numerical examples are considered on finding the electric field. In the role of domains are taken ellipsoidal, spherical and cylindrical domains and both the potential and strength of the field are calculated. Numerical results are presented.