用ab-101菌群处理果仁:性能和可能的机制

IF 1.3 4区 农林科学 Q2 Agricultural and Biological Sciences Journal of Oil Palm Research Pub Date : 2023-07-28 DOI:10.21894/jopr.2023.0029
Ummi Kalsum Hasanah MOHD NADZIM
{"title":"用ab-101菌群处理果仁:性能和可能的机制","authors":"Ummi Kalsum Hasanah MOHD NADZIM","doi":"10.21894/jopr.2023.0029","DOIUrl":null,"url":null,"abstract":"Due to the high organic load content, palm oil mill effluent (POME) has undergone various treatment systems. Most palm oil millers prefer to add a new approach to improve the existing treatment system but the investment and operation costs are too high to be incurred. Therefore, this study emphasizes the AB-101 microbial consortium performance in treating POME under the original operating parameters (0.2% AB-101 volume percentage, 7.5% molasses volume percentage and 100 ppm bio-activator dosage). The percentage reductions of POME characteristics under the original operating factor were 67.6% biochemical oxygen demand (BOD), 59.2% chemical oxygen demand (COD), 82.8% total suspended solids (TSS) and 66.7% oil and degrease (O&G). Meanwhile, POME treated with AB-101 under the optimal operating parameters (0.01% AB-101 volume percentage, 9.85% molasses volume percentage and 43.8 ppm bio-activator dosage) showed better characteristics of 92.9% BOD, 65.3% COD, 93.4% TSS and 95.5% O&G. Based on the proposed mechanism, lignocellulose degradation was greater when AB-101 was added into POME which improved the primary treatment of POME through enhanced anaerobic digestion.","PeriodicalId":16613,"journal":{"name":"Journal of Oil Palm Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POME TREATMENT USING AB-101 MICROBIAL CONSORTIUM: PERFORMANCE AND PROPOSED MECHANISM\",\"authors\":\"Ummi Kalsum Hasanah MOHD NADZIM\",\"doi\":\"10.21894/jopr.2023.0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high organic load content, palm oil mill effluent (POME) has undergone various treatment systems. Most palm oil millers prefer to add a new approach to improve the existing treatment system but the investment and operation costs are too high to be incurred. Therefore, this study emphasizes the AB-101 microbial consortium performance in treating POME under the original operating parameters (0.2% AB-101 volume percentage, 7.5% molasses volume percentage and 100 ppm bio-activator dosage). The percentage reductions of POME characteristics under the original operating factor were 67.6% biochemical oxygen demand (BOD), 59.2% chemical oxygen demand (COD), 82.8% total suspended solids (TSS) and 66.7% oil and degrease (O&G). Meanwhile, POME treated with AB-101 under the optimal operating parameters (0.01% AB-101 volume percentage, 9.85% molasses volume percentage and 43.8 ppm bio-activator dosage) showed better characteristics of 92.9% BOD, 65.3% COD, 93.4% TSS and 95.5% O&G. Based on the proposed mechanism, lignocellulose degradation was greater when AB-101 was added into POME which improved the primary treatment of POME through enhanced anaerobic digestion.\",\"PeriodicalId\":16613,\"journal\":{\"name\":\"Journal of Oil Palm Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oil Palm Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21894/jopr.2023.0029\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oil Palm Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21894/jopr.2023.0029","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

由于有机负荷含量高,棕榈油厂废水(POME)经过了各种处理系统。大多数棕榈油加工厂倾向于增加一种新的方法来改善现有的处理系统,但投资和运营成本太高,无法产生。因此,本研究强调了AB-101微生物群落在原始操作参数(0.2%AB-101体积百分比、7.5%糖蜜体积百分比和100ppm生物活化剂剂量)下处理聚甲醛的性能。在原始操作因子下,POME特性的降低百分比为67.6%的生化需氧量(BOD)、59.2%的化学需氧量(COD)、82.8%的总悬浮固体(TSS)和66.7%的油和脱脂(O&G)。同时,在最佳操作参数(0.01%AB-101体积百分比、9.85%糖蜜体积百分比和43.8ppm生物活化剂剂量)下,AB-101处理POME的BOD、COD、TSS和O&G分别达到92.9%、65.3%、93.4%和95.5%。基于所提出的机理,当AB-101加入到聚甲醛中时,木质纤维素降解更大,这通过增强厌氧消化改善了聚甲醛的初级处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POME TREATMENT USING AB-101 MICROBIAL CONSORTIUM: PERFORMANCE AND PROPOSED MECHANISM
Due to the high organic load content, palm oil mill effluent (POME) has undergone various treatment systems. Most palm oil millers prefer to add a new approach to improve the existing treatment system but the investment and operation costs are too high to be incurred. Therefore, this study emphasizes the AB-101 microbial consortium performance in treating POME under the original operating parameters (0.2% AB-101 volume percentage, 7.5% molasses volume percentage and 100 ppm bio-activator dosage). The percentage reductions of POME characteristics under the original operating factor were 67.6% biochemical oxygen demand (BOD), 59.2% chemical oxygen demand (COD), 82.8% total suspended solids (TSS) and 66.7% oil and degrease (O&G). Meanwhile, POME treated with AB-101 under the optimal operating parameters (0.01% AB-101 volume percentage, 9.85% molasses volume percentage and 43.8 ppm bio-activator dosage) showed better characteristics of 92.9% BOD, 65.3% COD, 93.4% TSS and 95.5% O&G. Based on the proposed mechanism, lignocellulose degradation was greater when AB-101 was added into POME which improved the primary treatment of POME through enhanced anaerobic digestion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Oil Palm Research
Journal of Oil Palm Research 农林科学-食品科技
CiteScore
2.60
自引率
30.80%
发文量
69
审稿时长
>12 weeks
期刊介绍: JOURNAL OF OIL PALM RESEARCH, an international refereed journal, carries full-length original research papers and scientific review papers on various aspects of oil palm and palm oil and other palms. It also publishes short communications, letters to editor and reviews of relevant books. JOURNAL OF OIL PALM RESEARCH is published four times per year, i.e. March, June, September and December.
期刊最新文献
EXPERIMENTAL INVESTIGATIONS ON TRIBOLOGICAL ASSESSMENT AND NOx EMISSIONS OF PALM BIODIESEL BLENDED WITH OLEIC ACID AND ETHANOL MATERIAL CIRCULARITY INDICATOR FOR THAI OIL PALM INDUSTRY COMPOSITE OF ZnO/SBE AS CATALYST MATERIALS FOR PHOTODEGRADATION OF RHODAMINE-B SEDIMENT FORMATION IN A PALM OIL BIODIESEL BLEND IN A SHIP FUEL TANK INSECT COMMUNITY ASSOCIATED WITH Ganoderma BASIDIOCARPS IN OIL PALM PLANTATIONS OF SABAH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1