{"title":"砂土中破碎小桩群的土-结构相互作用","authors":"Sanchari Mondal, M. Disfani","doi":"10.56295/agj5738","DOIUrl":null,"url":null,"abstract":"Battered minipile groups mimicking tree root networks have been gaining popularity as a footing solution for light structural applications in residential, commercial and infrastructure sectors, recently. Battered minipile group configurations are recently in the limelight due to advantages such as ease of installation and environmentally friendly nature. The lateral load resistance of battered minipile groups is investigated in this paper through a combination of physical and numerical modelling. Two-unconventional battered minipile groups with configurations representing the root network of trees with the capacity of engaging a larger volume of soil compared to conventional battered minipile group configurations are studied. A conventional battered minipile group is also included in the study to draw a direct comparison with the new minipile group configurations introduced in this paper. The conventional battered minipile group has two positively and two negatively 25° battered minipiles. The second type of group has one 25° perpendicularly battered minipile in the leading and trailing row each. Another unique orientation of the battered minipile group is also introduced in this study which has four diagonally outward 25° battered minipiles. The third type of minipile group with four diagonally outward battered minipiles offered the highest lateral resistance among the three groups. This better performance capability was attributed to the engagement of a larger volume of soil in resisting lateral load applied at the minipile head. Through this study, the industrial application of the unconventional minipile group configuration with better performance capability in terms of lateral load resistance can be advocated more confidently.","PeriodicalId":43619,"journal":{"name":"Australian Geomechanics Journal","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil-Structure Interaction of Battered Minipile Groups in Sandy Soil\",\"authors\":\"Sanchari Mondal, M. Disfani\",\"doi\":\"10.56295/agj5738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battered minipile groups mimicking tree root networks have been gaining popularity as a footing solution for light structural applications in residential, commercial and infrastructure sectors, recently. Battered minipile group configurations are recently in the limelight due to advantages such as ease of installation and environmentally friendly nature. The lateral load resistance of battered minipile groups is investigated in this paper through a combination of physical and numerical modelling. Two-unconventional battered minipile groups with configurations representing the root network of trees with the capacity of engaging a larger volume of soil compared to conventional battered minipile group configurations are studied. A conventional battered minipile group is also included in the study to draw a direct comparison with the new minipile group configurations introduced in this paper. The conventional battered minipile group has two positively and two negatively 25° battered minipiles. The second type of group has one 25° perpendicularly battered minipile in the leading and trailing row each. Another unique orientation of the battered minipile group is also introduced in this study which has four diagonally outward 25° battered minipiles. The third type of minipile group with four diagonally outward battered minipiles offered the highest lateral resistance among the three groups. This better performance capability was attributed to the engagement of a larger volume of soil in resisting lateral load applied at the minipile head. Through this study, the industrial application of the unconventional minipile group configuration with better performance capability in terms of lateral load resistance can be advocated more confidently.\",\"PeriodicalId\":43619,\"journal\":{\"name\":\"Australian Geomechanics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Geomechanics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56295/agj5738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Geomechanics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56295/agj5738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Soil-Structure Interaction of Battered Minipile Groups in Sandy Soil
Battered minipile groups mimicking tree root networks have been gaining popularity as a footing solution for light structural applications in residential, commercial and infrastructure sectors, recently. Battered minipile group configurations are recently in the limelight due to advantages such as ease of installation and environmentally friendly nature. The lateral load resistance of battered minipile groups is investigated in this paper through a combination of physical and numerical modelling. Two-unconventional battered minipile groups with configurations representing the root network of trees with the capacity of engaging a larger volume of soil compared to conventional battered minipile group configurations are studied. A conventional battered minipile group is also included in the study to draw a direct comparison with the new minipile group configurations introduced in this paper. The conventional battered minipile group has two positively and two negatively 25° battered minipiles. The second type of group has one 25° perpendicularly battered minipile in the leading and trailing row each. Another unique orientation of the battered minipile group is also introduced in this study which has four diagonally outward 25° battered minipiles. The third type of minipile group with four diagonally outward battered minipiles offered the highest lateral resistance among the three groups. This better performance capability was attributed to the engagement of a larger volume of soil in resisting lateral load applied at the minipile head. Through this study, the industrial application of the unconventional minipile group configuration with better performance capability in terms of lateral load resistance can be advocated more confidently.