Nurgeldy Praliyev, Kassym Zhunis, Y. Kalel, Dinara Dikhanbayeva, L. Rojas-Solórzano
{"title":"单轴和双轴太阳能跟踪对并网光伏系统技术经济可行性的影响:以哈萨克斯坦Burnoye-1为例","authors":"Nurgeldy Praliyev, Kassym Zhunis, Y. Kalel, Dinara Dikhanbayeva, L. Rojas-Solórzano","doi":"10.5278/IJSEPM.3665","DOIUrl":null,"url":null,"abstract":"Kazakhstan is currently committed to develop its renewable energy resources. In 2012, the government introduced a low-carbon energy strategy to reduce the production of air pollutants, including anthropogenic CO2e, and to increase the share of clean energy up to 50% of total consumption by 2050. As a contribution to this strategy, this paper presents a comparison in techno-economic performance of three scenarios. The differentiation will be between currently implemented fixed-slope on-grid PV power plants in Kazakhstan and proxy similar solar parks using one- or two-axis solar tracking systems. This paper aims to determine to what extent the more effective, but more expensive tracking systems might be a suitable standard in future PV power stations in the country. For this purpose, the existent fixed-slope 50 MWp Burnoye-1 commercial solar power plant located in Jambyl region, Kazakhstan, is used as a benchmark. As expected, solar panels with tracking systems produce more electricity year-round compared to those with fixed slopes. In comparison, one- and two-axis tracking systems led almost to the same amount of electricity export to the grid. Furthermore, despite the proxy PV power stations with one- and two-axis tracking technology could reduce around 10 ktCO2e emissions per year. This 25 to 29% and 33 to 33% ratio of extra-cost to extra-energy production, respectively, made both tracking scenarios not economically competitive compared to fixed panels. Nevertheless, if a tracking system has to be considered to further reduce GHG emissions and add extra annual electricity generation using current installed capacity of Burnoye-I, our results demonstrated that one-axis tracking should be preferred above two-axis system.","PeriodicalId":37803,"journal":{"name":"International Journal of Sustainable Energy Planning and Management","volume":"29 1","pages":"79-90"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact of One- and Two-axis Solar Tracking on Techno-Economic Viability of On-Grid PV Systems: Case of Burnoye-1, Kazakhstan\",\"authors\":\"Nurgeldy Praliyev, Kassym Zhunis, Y. Kalel, Dinara Dikhanbayeva, L. Rojas-Solórzano\",\"doi\":\"10.5278/IJSEPM.3665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kazakhstan is currently committed to develop its renewable energy resources. In 2012, the government introduced a low-carbon energy strategy to reduce the production of air pollutants, including anthropogenic CO2e, and to increase the share of clean energy up to 50% of total consumption by 2050. As a contribution to this strategy, this paper presents a comparison in techno-economic performance of three scenarios. The differentiation will be between currently implemented fixed-slope on-grid PV power plants in Kazakhstan and proxy similar solar parks using one- or two-axis solar tracking systems. This paper aims to determine to what extent the more effective, but more expensive tracking systems might be a suitable standard in future PV power stations in the country. For this purpose, the existent fixed-slope 50 MWp Burnoye-1 commercial solar power plant located in Jambyl region, Kazakhstan, is used as a benchmark. As expected, solar panels with tracking systems produce more electricity year-round compared to those with fixed slopes. In comparison, one- and two-axis tracking systems led almost to the same amount of electricity export to the grid. Furthermore, despite the proxy PV power stations with one- and two-axis tracking technology could reduce around 10 ktCO2e emissions per year. This 25 to 29% and 33 to 33% ratio of extra-cost to extra-energy production, respectively, made both tracking scenarios not economically competitive compared to fixed panels. Nevertheless, if a tracking system has to be considered to further reduce GHG emissions and add extra annual electricity generation using current installed capacity of Burnoye-I, our results demonstrated that one-axis tracking should be preferred above two-axis system.\",\"PeriodicalId\":37803,\"journal\":{\"name\":\"International Journal of Sustainable Energy Planning and Management\",\"volume\":\"29 1\",\"pages\":\"79-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Energy Planning and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5278/IJSEPM.3665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy Planning and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5278/IJSEPM.3665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Impact of One- and Two-axis Solar Tracking on Techno-Economic Viability of On-Grid PV Systems: Case of Burnoye-1, Kazakhstan
Kazakhstan is currently committed to develop its renewable energy resources. In 2012, the government introduced a low-carbon energy strategy to reduce the production of air pollutants, including anthropogenic CO2e, and to increase the share of clean energy up to 50% of total consumption by 2050. As a contribution to this strategy, this paper presents a comparison in techno-economic performance of three scenarios. The differentiation will be between currently implemented fixed-slope on-grid PV power plants in Kazakhstan and proxy similar solar parks using one- or two-axis solar tracking systems. This paper aims to determine to what extent the more effective, but more expensive tracking systems might be a suitable standard in future PV power stations in the country. For this purpose, the existent fixed-slope 50 MWp Burnoye-1 commercial solar power plant located in Jambyl region, Kazakhstan, is used as a benchmark. As expected, solar panels with tracking systems produce more electricity year-round compared to those with fixed slopes. In comparison, one- and two-axis tracking systems led almost to the same amount of electricity export to the grid. Furthermore, despite the proxy PV power stations with one- and two-axis tracking technology could reduce around 10 ktCO2e emissions per year. This 25 to 29% and 33 to 33% ratio of extra-cost to extra-energy production, respectively, made both tracking scenarios not economically competitive compared to fixed panels. Nevertheless, if a tracking system has to be considered to further reduce GHG emissions and add extra annual electricity generation using current installed capacity of Burnoye-I, our results demonstrated that one-axis tracking should be preferred above two-axis system.
期刊介绍:
The journal is an international interdisciplinary journal in Sustainable Energy Planning and Management combining engineering and social science within Energy System Analysis, Feasibility Studies and Public Regulation. The journal especially welcomes papers within the following three focus areas: Energy System analysis including theories, methodologies, data handling and software tools as well as specific models and analyses at local, regional, country and/or global level. Economics, Socio economics and Feasibility studies including theories and methodologies of institutional economics as well as specific feasibility studies and analyses. Public Regulation and management including theories and methodologies as well as specific analyses and proposals in the light of the implementation and transition into sustainable energy systems.