Gexiang Zhang, Xihai Zhang, Haina Rong, Prithwineel Paul, Ming Zhu, Ferrante Neri, Y. Ong
{"title":"分类问题的分层尖峰神经系统","authors":"Gexiang Zhang, Xihai Zhang, Haina Rong, Prithwineel Paul, Ming Zhu, Ferrante Neri, Y. Ong","doi":"10.1142/S012906572250023X","DOIUrl":null,"url":null,"abstract":"Biological brains have a natural capacity for resolving certain classification tasks. Studies on biologically plausible spiking neurons, architectures and mechanisms of artificial neural systems that closely match biological observations while giving high classification performance are gaining momentum. Spiking neural P systems (SN P systems) are a class of membrane computing models and third-generation neural networks that are based on the behavior of biological neural cells and have been used in various engineering applications. Furthermore, SN P systems are characterized by a highly flexible structure that enables the design of a machine learning algorithm by mimicking the structure and behavior of biological cells without the over-simplification present in neural networks. Based on this aspect, this paper proposes a novel type of SN P system, namely, layered SN P system (LSN P system), to solve classification problems by supervised learning. The proposed LSN P system consists of a multi-layer network containing multiple weighted fuzzy SN P systems with adaptive weight adjustment rules. The proposed system employs specific ascending dimension techniques and a selection method of output neurons for classification problems. The experimental results obtained using benchmark datasets from the UCI machine learning repository and MNIST dataset demonstrated the feasibility and effectiveness of the proposed LSN P system. More importantly, the proposed LSN P system presents the first SN P system that demonstrates sufficient performance for use in addressing real-world classification problems.","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"1 1","pages":"2250023"},"PeriodicalIF":6.6000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A Layered Spiking Neural System for Classification Problems\",\"authors\":\"Gexiang Zhang, Xihai Zhang, Haina Rong, Prithwineel Paul, Ming Zhu, Ferrante Neri, Y. Ong\",\"doi\":\"10.1142/S012906572250023X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological brains have a natural capacity for resolving certain classification tasks. Studies on biologically plausible spiking neurons, architectures and mechanisms of artificial neural systems that closely match biological observations while giving high classification performance are gaining momentum. Spiking neural P systems (SN P systems) are a class of membrane computing models and third-generation neural networks that are based on the behavior of biological neural cells and have been used in various engineering applications. Furthermore, SN P systems are characterized by a highly flexible structure that enables the design of a machine learning algorithm by mimicking the structure and behavior of biological cells without the over-simplification present in neural networks. Based on this aspect, this paper proposes a novel type of SN P system, namely, layered SN P system (LSN P system), to solve classification problems by supervised learning. The proposed LSN P system consists of a multi-layer network containing multiple weighted fuzzy SN P systems with adaptive weight adjustment rules. The proposed system employs specific ascending dimension techniques and a selection method of output neurons for classification problems. The experimental results obtained using benchmark datasets from the UCI machine learning repository and MNIST dataset demonstrated the feasibility and effectiveness of the proposed LSN P system. More importantly, the proposed LSN P system presents the first SN P system that demonstrates sufficient performance for use in addressing real-world classification problems.\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"1 1\",\"pages\":\"2250023\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S012906572250023X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S012906572250023X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Layered Spiking Neural System for Classification Problems
Biological brains have a natural capacity for resolving certain classification tasks. Studies on biologically plausible spiking neurons, architectures and mechanisms of artificial neural systems that closely match biological observations while giving high classification performance are gaining momentum. Spiking neural P systems (SN P systems) are a class of membrane computing models and third-generation neural networks that are based on the behavior of biological neural cells and have been used in various engineering applications. Furthermore, SN P systems are characterized by a highly flexible structure that enables the design of a machine learning algorithm by mimicking the structure and behavior of biological cells without the over-simplification present in neural networks. Based on this aspect, this paper proposes a novel type of SN P system, namely, layered SN P system (LSN P system), to solve classification problems by supervised learning. The proposed LSN P system consists of a multi-layer network containing multiple weighted fuzzy SN P systems with adaptive weight adjustment rules. The proposed system employs specific ascending dimension techniques and a selection method of output neurons for classification problems. The experimental results obtained using benchmark datasets from the UCI machine learning repository and MNIST dataset demonstrated the feasibility and effectiveness of the proposed LSN P system. More importantly, the proposed LSN P system presents the first SN P system that demonstrates sufficient performance for use in addressing real-world classification problems.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.