{"title":"α-变形菌Methanotroph Methycystis sp.Rockwell生产生物量和聚羟基丁酸的甲烷进料和氮碳比优化","authors":"H. Sharma, Dominic Sauvageau, L. Stein","doi":"10.3390/methane1040026","DOIUrl":null,"url":null,"abstract":"The consumption of methane and the production of biodegradable polymers using alphaproteobacterial methanotrophs offers a promising strategy to mitigate greenhouse gas emissions and reduce non-biodegradable plastic pollution. This study identified an ideal amount of added methane and N:C ratio in 100 mL batch cultures of the alphaproteobacterial methanotroph Methylocystis sp. Rockwell growing in 1-L sealed bottles using Response Surface Methodology (RSM) to achieve both high biomass and high polyhydroxybutyrate (PHB) production. RSM analysis showed achievement of optimal biomass at 474.7 ± 10.1 mg/L in nitrate mineral salts (NMS) medium and 480.0 ± 65.5 mg/L biomass in ammonium mineral salts (AMS) medium with 8 mmol of methane and an N:C ratio of 0.022. However, optimal PHB concentration was achieved with 6 mmol methane at N:C ratios of 0.012 in NMS medium (149.7 ± 16.1 mg/L) and 0.022 in AMS medium (200.3 ± 5.1 mg/L). A multi-objective RSM analysis projected maxima in PHB production and %PHB cell content (based on dry weight) when using 4.88 mmol methane and N:C ratio of 0.016 in NMS cultures, and 6.28 mmol methane and the 0.016 N:C ratio in AMS cultures. Cultures grown under these projected conditions produced 173.7 mg PHB/L with 46.8% PHB cell content in NMS and 196.9 mg/L with 53.1% PHB cell content in AMS. Taken together, these analyses predicted the optimal conditions for growth and PHB production in batch cultures of Methylocystis sp. Rockwell and confirmed a preference for ammonium as the N-source for PHB production. This information is valuable for media formulation in industrial scale-up of Methylocystis sp. Rockwell in PHB production.","PeriodicalId":74177,"journal":{"name":"Methane","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Methane Feed and N:C Ratio for Biomass and Polyhydroxybutyrate Production by the Alphaproteobacterial Methanotroph Methylocystis sp. Rockwell\",\"authors\":\"H. Sharma, Dominic Sauvageau, L. Stein\",\"doi\":\"10.3390/methane1040026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consumption of methane and the production of biodegradable polymers using alphaproteobacterial methanotrophs offers a promising strategy to mitigate greenhouse gas emissions and reduce non-biodegradable plastic pollution. This study identified an ideal amount of added methane and N:C ratio in 100 mL batch cultures of the alphaproteobacterial methanotroph Methylocystis sp. Rockwell growing in 1-L sealed bottles using Response Surface Methodology (RSM) to achieve both high biomass and high polyhydroxybutyrate (PHB) production. RSM analysis showed achievement of optimal biomass at 474.7 ± 10.1 mg/L in nitrate mineral salts (NMS) medium and 480.0 ± 65.5 mg/L biomass in ammonium mineral salts (AMS) medium with 8 mmol of methane and an N:C ratio of 0.022. However, optimal PHB concentration was achieved with 6 mmol methane at N:C ratios of 0.012 in NMS medium (149.7 ± 16.1 mg/L) and 0.022 in AMS medium (200.3 ± 5.1 mg/L). A multi-objective RSM analysis projected maxima in PHB production and %PHB cell content (based on dry weight) when using 4.88 mmol methane and N:C ratio of 0.016 in NMS cultures, and 6.28 mmol methane and the 0.016 N:C ratio in AMS cultures. Cultures grown under these projected conditions produced 173.7 mg PHB/L with 46.8% PHB cell content in NMS and 196.9 mg/L with 53.1% PHB cell content in AMS. Taken together, these analyses predicted the optimal conditions for growth and PHB production in batch cultures of Methylocystis sp. Rockwell and confirmed a preference for ammonium as the N-source for PHB production. This information is valuable for media formulation in industrial scale-up of Methylocystis sp. Rockwell in PHB production.\",\"PeriodicalId\":74177,\"journal\":{\"name\":\"Methane\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methane\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/methane1040026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane1040026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Methane Feed and N:C Ratio for Biomass and Polyhydroxybutyrate Production by the Alphaproteobacterial Methanotroph Methylocystis sp. Rockwell
The consumption of methane and the production of biodegradable polymers using alphaproteobacterial methanotrophs offers a promising strategy to mitigate greenhouse gas emissions and reduce non-biodegradable plastic pollution. This study identified an ideal amount of added methane and N:C ratio in 100 mL batch cultures of the alphaproteobacterial methanotroph Methylocystis sp. Rockwell growing in 1-L sealed bottles using Response Surface Methodology (RSM) to achieve both high biomass and high polyhydroxybutyrate (PHB) production. RSM analysis showed achievement of optimal biomass at 474.7 ± 10.1 mg/L in nitrate mineral salts (NMS) medium and 480.0 ± 65.5 mg/L biomass in ammonium mineral salts (AMS) medium with 8 mmol of methane and an N:C ratio of 0.022. However, optimal PHB concentration was achieved with 6 mmol methane at N:C ratios of 0.012 in NMS medium (149.7 ± 16.1 mg/L) and 0.022 in AMS medium (200.3 ± 5.1 mg/L). A multi-objective RSM analysis projected maxima in PHB production and %PHB cell content (based on dry weight) when using 4.88 mmol methane and N:C ratio of 0.016 in NMS cultures, and 6.28 mmol methane and the 0.016 N:C ratio in AMS cultures. Cultures grown under these projected conditions produced 173.7 mg PHB/L with 46.8% PHB cell content in NMS and 196.9 mg/L with 53.1% PHB cell content in AMS. Taken together, these analyses predicted the optimal conditions for growth and PHB production in batch cultures of Methylocystis sp. Rockwell and confirmed a preference for ammonium as the N-source for PHB production. This information is valuable for media formulation in industrial scale-up of Methylocystis sp. Rockwell in PHB production.