{"title":"海湾三角洲初级生产者的遥感","authors":"E. Hestir, I. Dronova","doi":"10.15447/sfews.2023v20iss4art5","DOIUrl":null,"url":null,"abstract":"Remote-sensing methods are being used to study a growing number of issues in the San Francisco Estuary, such as (1) detecting the optical properties of chlorophyll-a concentrations and dissolved organic matter to assess productivity and the nature of carbon inputs, (2) creating historical records of invasive aquatic vegetation expansion through space and time, (3) identifying origins and expansions of invasions, and (4) supporting models of greenhouse-gas sequestration by expanding restoration projects. Technological capabilities of remote sensing have likewise expanded to include a wide array of opportunities: from boat-mounted sensors, human-operated low-flying planes, and aerial drones, to freely accessible satellite imagery. Growing interest in coordinating these monitoring methods in the name of collaboration and cost-efficiency has led to the creation of diverse expert teams such as the Remote Imagery Collaborative, and monitoring frameworks such as the Interagency Ecological Program Aquatic Vegetation Monitoring Framework and Wetland Regional Monitoring Program. This paper explores the emerging technologies and applications of various methods for studying primary producers, with an emphasis on remote sensing.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remote Sensing of Primary Producers in the Bay-Delta\",\"authors\":\"E. Hestir, I. Dronova\",\"doi\":\"10.15447/sfews.2023v20iss4art5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote-sensing methods are being used to study a growing number of issues in the San Francisco Estuary, such as (1) detecting the optical properties of chlorophyll-a concentrations and dissolved organic matter to assess productivity and the nature of carbon inputs, (2) creating historical records of invasive aquatic vegetation expansion through space and time, (3) identifying origins and expansions of invasions, and (4) supporting models of greenhouse-gas sequestration by expanding restoration projects. Technological capabilities of remote sensing have likewise expanded to include a wide array of opportunities: from boat-mounted sensors, human-operated low-flying planes, and aerial drones, to freely accessible satellite imagery. Growing interest in coordinating these monitoring methods in the name of collaboration and cost-efficiency has led to the creation of diverse expert teams such as the Remote Imagery Collaborative, and monitoring frameworks such as the Interagency Ecological Program Aquatic Vegetation Monitoring Framework and Wetland Regional Monitoring Program. This paper explores the emerging technologies and applications of various methods for studying primary producers, with an emphasis on remote sensing.\",\"PeriodicalId\":38364,\"journal\":{\"name\":\"San Francisco Estuary and Watershed Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"San Francisco Estuary and Watershed Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15447/sfews.2023v20iss4art5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"San Francisco Estuary and Watershed Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15447/sfews.2023v20iss4art5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Remote Sensing of Primary Producers in the Bay-Delta
Remote-sensing methods are being used to study a growing number of issues in the San Francisco Estuary, such as (1) detecting the optical properties of chlorophyll-a concentrations and dissolved organic matter to assess productivity and the nature of carbon inputs, (2) creating historical records of invasive aquatic vegetation expansion through space and time, (3) identifying origins and expansions of invasions, and (4) supporting models of greenhouse-gas sequestration by expanding restoration projects. Technological capabilities of remote sensing have likewise expanded to include a wide array of opportunities: from boat-mounted sensors, human-operated low-flying planes, and aerial drones, to freely accessible satellite imagery. Growing interest in coordinating these monitoring methods in the name of collaboration and cost-efficiency has led to the creation of diverse expert teams such as the Remote Imagery Collaborative, and monitoring frameworks such as the Interagency Ecological Program Aquatic Vegetation Monitoring Framework and Wetland Regional Monitoring Program. This paper explores the emerging technologies and applications of various methods for studying primary producers, with an emphasis on remote sensing.