基于均值-教师卷积递归神经网络模型的弱监督声音事件检测系统性能分析

Seokjin Lee
{"title":"基于均值-教师卷积递归神经网络模型的弱监督声音事件检测系统性能分析","authors":"Seokjin Lee","doi":"10.7776/ASK.2021.40.2.139","DOIUrl":null,"url":null,"abstract":"This paper introduces and implements a Sound Event Detection (SED) system based on weaklysupervised learning where only part of the data is labeled, and analyzes the effect of parameters. The SED system estimates the classes and onset/offset times of events in the acoustic signal. In order to train the model, all information on the event class and onset/offset times must be provided. Unfortunately, the onset/offset times are hard to be labeled exactly. Therefore, in the weakly-supervised task, the SED model is trained by “strongly labeled data” including the event class and activations, “weakly labeled data” including the event class, and “unlabeled data” without any label. Recently, the SED systems using the mean-teacher model are widely used for the task with several parameters. These parameters should be chosen carefully because they may affect the performance. In this paper, performance analysis was performed on parameters, such as the feature, moving average parameter, weight of the consistency cost function, ramp-up length, and maximum learning rate, using the data of DCASE 2020 Task 4. Effects and the optimal values of the parameters were discussed.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"40 1","pages":"139-147"},"PeriodicalIF":0.2000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of weakly-supervised sound event detection system based on the mean-teacher convolutional recurrent neural network model\",\"authors\":\"Seokjin Lee\",\"doi\":\"10.7776/ASK.2021.40.2.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces and implements a Sound Event Detection (SED) system based on weaklysupervised learning where only part of the data is labeled, and analyzes the effect of parameters. The SED system estimates the classes and onset/offset times of events in the acoustic signal. In order to train the model, all information on the event class and onset/offset times must be provided. Unfortunately, the onset/offset times are hard to be labeled exactly. Therefore, in the weakly-supervised task, the SED model is trained by “strongly labeled data” including the event class and activations, “weakly labeled data” including the event class, and “unlabeled data” without any label. Recently, the SED systems using the mean-teacher model are widely used for the task with several parameters. These parameters should be chosen carefully because they may affect the performance. In this paper, performance analysis was performed on parameters, such as the feature, moving average parameter, weight of the consistency cost function, ramp-up length, and maximum learning rate, using the data of DCASE 2020 Task 4. Effects and the optimal values of the parameters were discussed.\",\"PeriodicalId\":42689,\"journal\":{\"name\":\"Journal of the Acoustical Society of Korea\",\"volume\":\"40 1\",\"pages\":\"139-147\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7776/ASK.2021.40.2.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2021.40.2.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并实现了一种基于弱监督学习的声音事件检测系统,该系统只对部分数据进行标记,并分析了参数的影响。SED系统估计声信号中事件的类别和开始/偏移时间。为了训练模型,必须提供关于事件类和开始/偏移时间的所有信息。不幸的是,开始/偏移时间很难准确标记。因此,在弱监督任务中,SED模型由“强标记数据”(包括事件类和激活)、“弱标记数据”(包括事件类)和没有任何标记的“未标记数据”来训练。近年来,使用均值-教师模型的SED系统被广泛用于多参数任务。这些参数应该谨慎选择,因为它们可能会影响性能。本文利用DCASE 2020 Task 4的数据,对特征、移动平均参数、一致性代价函数权重、爬坡长度、最大学习率等参数进行性能分析。讨论了各参数的影响及最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of weakly-supervised sound event detection system based on the mean-teacher convolutional recurrent neural network model
This paper introduces and implements a Sound Event Detection (SED) system based on weaklysupervised learning where only part of the data is labeled, and analyzes the effect of parameters. The SED system estimates the classes and onset/offset times of events in the acoustic signal. In order to train the model, all information on the event class and onset/offset times must be provided. Unfortunately, the onset/offset times are hard to be labeled exactly. Therefore, in the weakly-supervised task, the SED model is trained by “strongly labeled data” including the event class and activations, “weakly labeled data” including the event class, and “unlabeled data” without any label. Recently, the SED systems using the mean-teacher model are widely used for the task with several parameters. These parameters should be chosen carefully because they may affect the performance. In this paper, performance analysis was performed on parameters, such as the feature, moving average parameter, weight of the consistency cost function, ramp-up length, and maximum learning rate, using the data of DCASE 2020 Task 4. Effects and the optimal values of the parameters were discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
50.00%
发文量
1
期刊最新文献
A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model An explorative study on the perceived emotion of music: according to cognitive styles of music listening A robust data association gate method of non-linear target tracking in dense cluttered environment Performance analysis of weakly-supervised sound event detection system based on the mean-teacher convolutional recurrent neural network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1