大规模水池火灾的计算检验:侧风速度和水池形状的变化

IF 2.8 Q2 MECHANICS Flow (Cambridge, England) Pub Date : 2022-11-03 DOI:10.1017/flo.2022.26
Sarah N. Scott, S. Domino
{"title":"大规模水池火灾的计算检验:侧风速度和水池形状的变化","authors":"Sarah N. Scott, S. Domino","doi":"10.1017/flo.2022.26","DOIUrl":null,"url":null,"abstract":"Abstract A high-fidelity large-eddy simulation and unsteady flamelet combustion model construct is deployed to numerically investigate the effects of crosswind magnitude and pool fire shape on large-scale pool fire attributes. These include general flame dynamics, flame shape and radiative flux magnitude in and around the fire. Three pool fire shapes at a nominal length scale of 10 m are subjected to four crosswind magnitudes between 0 and 20 m s$^{-1}$. The pool shapes studied are circular, square and rectangular. The study includes the sensitivity of parameters to mesh and time step refinement. Results demonstrate that the rectangular shape, under crosswind, has low-levels of vertical velocity induction, resulting in a plume that is closer to the ground. In the quiescent regime, under-resolved meshes provide a higher radiative heat flux prediction compared with the most refined mesh. However, as crosswind increases, low mesh resolutions underpredicted radiative flux. This is due to the coarse mesh resolution not capturing small-scale vortical features that increased mixing and combustion efficiency. A transition of peak radiative flux with respect to crosswind occurs from the leeward- to windward-side of the pool, while sharp pool features result in larger radiative heat fluxes concentrated in regions of high scalar dissipation rate.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A computational examination of large-scale pool fires: variations in crosswind velocity and pool shape\",\"authors\":\"Sarah N. Scott, S. Domino\",\"doi\":\"10.1017/flo.2022.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A high-fidelity large-eddy simulation and unsteady flamelet combustion model construct is deployed to numerically investigate the effects of crosswind magnitude and pool fire shape on large-scale pool fire attributes. These include general flame dynamics, flame shape and radiative flux magnitude in and around the fire. Three pool fire shapes at a nominal length scale of 10 m are subjected to four crosswind magnitudes between 0 and 20 m s$^{-1}$. The pool shapes studied are circular, square and rectangular. The study includes the sensitivity of parameters to mesh and time step refinement. Results demonstrate that the rectangular shape, under crosswind, has low-levels of vertical velocity induction, resulting in a plume that is closer to the ground. In the quiescent regime, under-resolved meshes provide a higher radiative heat flux prediction compared with the most refined mesh. However, as crosswind increases, low mesh resolutions underpredicted radiative flux. This is due to the coarse mesh resolution not capturing small-scale vortical features that increased mixing and combustion efficiency. A transition of peak radiative flux with respect to crosswind occurs from the leeward- to windward-side of the pool, while sharp pool features result in larger radiative heat fluxes concentrated in regions of high scalar dissipation rate.\",\"PeriodicalId\":93752,\"journal\":{\"name\":\"Flow (Cambridge, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow (Cambridge, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/flo.2022.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2022.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要采用高保真大涡模拟非定常火焰燃烧模型,数值研究了侧风强度和池火形状对大尺度池火属性的影响。这些包括一般的火焰动力学、火焰形状和火焰内部和周围的辐射通量大小。在10 m标称长度尺度上的3种池火形状受到4个0到20 m s$^{-1}$的侧风的影响。研究的水池形状有圆形、方形和矩形。研究内容包括参数对网格的敏感性和时间步长细化。结果表明,在侧风作用下,矩形的垂直速度感应水平较低,导致羽流更接近地面。在静态状态下,与最精细的网格相比,欠分解网格提供了更高的辐射热通量预测。然而,随着侧风的增加,低网格分辨率低估了辐射通量。这是由于粗网格分辨率不能捕捉到增加混合和燃烧效率的小尺度涡旋特征。辐射通量峰值相对于侧风发生从池的背风向迎风的转变,而尖锐的池特征导致较大的辐射热通量集中在高标量耗散率的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational examination of large-scale pool fires: variations in crosswind velocity and pool shape
Abstract A high-fidelity large-eddy simulation and unsteady flamelet combustion model construct is deployed to numerically investigate the effects of crosswind magnitude and pool fire shape on large-scale pool fire attributes. These include general flame dynamics, flame shape and radiative flux magnitude in and around the fire. Three pool fire shapes at a nominal length scale of 10 m are subjected to four crosswind magnitudes between 0 and 20 m s$^{-1}$. The pool shapes studied are circular, square and rectangular. The study includes the sensitivity of parameters to mesh and time step refinement. Results demonstrate that the rectangular shape, under crosswind, has low-levels of vertical velocity induction, resulting in a plume that is closer to the ground. In the quiescent regime, under-resolved meshes provide a higher radiative heat flux prediction compared with the most refined mesh. However, as crosswind increases, low mesh resolutions underpredicted radiative flux. This is due to the coarse mesh resolution not capturing small-scale vortical features that increased mixing and combustion efficiency. A transition of peak radiative flux with respect to crosswind occurs from the leeward- to windward-side of the pool, while sharp pool features result in larger radiative heat fluxes concentrated in regions of high scalar dissipation rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Benefits of controlled inclination for contactless transport by squeeze-film levitation Investigating cohesive sediment dynamics in open waters via grain-resolved simulations Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies Competing effects of buoyancy-driven and electrothermal flows for Joule heating-induced transport in microchannels Effects of prey capture on the swimming and feeding performance of choanoflagellates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1