K. Bredesen, M. Lorentzen, L. Nielsen, K. Mosegaard
{"title":"丹麦北海Valdemar油田下白垩统储层定量地震解释","authors":"K. Bredesen, M. Lorentzen, L. Nielsen, K. Mosegaard","doi":"10.1144/petgeo2021-016","DOIUrl":null,"url":null,"abstract":"A quantitative seismic interpretation study is presented for the Lower Cretaceous Tuxen reservoir in the Valdemar Field, which is associated with heterogeneous and complex geology. Our objective is to better outline the reservoir quality variations of the Tuxen reservoir across the Valdemar Field. Seismic pre-stack data and well logs from two appraisal wells form the basis of this study. The workflow used includes seismic and rock physics forward modelling, attribute analysis, a coloured inversion, and a Bayesian pre-stack inversion for litho-fluid classification. Based on log data, the rock physics properties of the Tuxen interval reveal that the seismic signal is more governed by porosity than water-saturation changes at near-offset (or small angle). The coloured and Bayesian inversion results were generally consistent with well-log observations at the reservoir level and conformed to interpreted horizons. Although the available data have some limitations and the geological setting is complex, the results implied more promising reservoir quality in some areas than others. Hence, the results may offer useful information for delineating the best reservoir zones for further field development and selecting appropriate production strategies.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantitative seismic interpretation of the Lower Cretaceous reservoirs in the Valdemar Field, Danish North Sea\",\"authors\":\"K. Bredesen, M. Lorentzen, L. Nielsen, K. Mosegaard\",\"doi\":\"10.1144/petgeo2021-016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantitative seismic interpretation study is presented for the Lower Cretaceous Tuxen reservoir in the Valdemar Field, which is associated with heterogeneous and complex geology. Our objective is to better outline the reservoir quality variations of the Tuxen reservoir across the Valdemar Field. Seismic pre-stack data and well logs from two appraisal wells form the basis of this study. The workflow used includes seismic and rock physics forward modelling, attribute analysis, a coloured inversion, and a Bayesian pre-stack inversion for litho-fluid classification. Based on log data, the rock physics properties of the Tuxen interval reveal that the seismic signal is more governed by porosity than water-saturation changes at near-offset (or small angle). The coloured and Bayesian inversion results were generally consistent with well-log observations at the reservoir level and conformed to interpreted horizons. Although the available data have some limitations and the geological setting is complex, the results implied more promising reservoir quality in some areas than others. Hence, the results may offer useful information for delineating the best reservoir zones for further field development and selecting appropriate production strategies.\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2021-016\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2021-016","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantitative seismic interpretation of the Lower Cretaceous reservoirs in the Valdemar Field, Danish North Sea
A quantitative seismic interpretation study is presented for the Lower Cretaceous Tuxen reservoir in the Valdemar Field, which is associated with heterogeneous and complex geology. Our objective is to better outline the reservoir quality variations of the Tuxen reservoir across the Valdemar Field. Seismic pre-stack data and well logs from two appraisal wells form the basis of this study. The workflow used includes seismic and rock physics forward modelling, attribute analysis, a coloured inversion, and a Bayesian pre-stack inversion for litho-fluid classification. Based on log data, the rock physics properties of the Tuxen interval reveal that the seismic signal is more governed by porosity than water-saturation changes at near-offset (or small angle). The coloured and Bayesian inversion results were generally consistent with well-log observations at the reservoir level and conformed to interpreted horizons. Although the available data have some limitations and the geological setting is complex, the results implied more promising reservoir quality in some areas than others. Hence, the results may offer useful information for delineating the best reservoir zones for further field development and selecting appropriate production strategies.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.