鱼类废弃物作为沼气原料的特性与分析

IF 2.4 4区 工程技术 Q3 ENERGY & FUELS International Journal of Low-carbon Technologies Pub Date : 2023-01-26 DOI:10.1093/ijlct/ctac135
Hortence Ingabire, Boniface Ntambara, Ezgad Mazimpaka
{"title":"鱼类废弃物作为沼气原料的特性与分析","authors":"Hortence Ingabire, Boniface Ntambara, Ezgad Mazimpaka","doi":"10.1093/ijlct/ctac135","DOIUrl":null,"url":null,"abstract":"\n Fish waste (FW) is biodegradable waste that remains underutilized and causes a problem to the environment since the existing disposal techniques result in health risks and environmental pollution. FW has significant potential for producing biogas that decrease the reliance on fossil fuels because it contains easily biodegradable organic matter. The physicochemical analysis of the fish waste such as moisture content (MC) of 61.78 %, volatile solids (VS) of 93.94 %, total solids (TS) of 38.21 %, ash content (AC) of 0.52%, total organic carbon (TOC) of 54.2%, total kjeldahl nitrogen (TKN) of 9.2% and carbon to nitrogen (C/N) ratio of 5.89 % were considered and analyzed in this research. In addition, the methane potential was determined and obtained using gas detector. The results shown that the methane (CH4) content in fish waste was 50.12 % which was the potential feedstock of fish waste for biogas production. Nevertheless, the VS of fish waste was high which was good for this feedstock to be easily digested as the sign of producing biogas and demonstrates 99.9985% of performance rate. Finally, the FW had a lower C/N ratio compared to other biogas production waste. Future work needs to consider co-digestion with higher C/N ratio feedstocks.","PeriodicalId":14118,"journal":{"name":"International Journal of Low-carbon Technologies","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization and Analysis of Fish Waste as Feedstock for Biogas Production\",\"authors\":\"Hortence Ingabire, Boniface Ntambara, Ezgad Mazimpaka\",\"doi\":\"10.1093/ijlct/ctac135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fish waste (FW) is biodegradable waste that remains underutilized and causes a problem to the environment since the existing disposal techniques result in health risks and environmental pollution. FW has significant potential for producing biogas that decrease the reliance on fossil fuels because it contains easily biodegradable organic matter. The physicochemical analysis of the fish waste such as moisture content (MC) of 61.78 %, volatile solids (VS) of 93.94 %, total solids (TS) of 38.21 %, ash content (AC) of 0.52%, total organic carbon (TOC) of 54.2%, total kjeldahl nitrogen (TKN) of 9.2% and carbon to nitrogen (C/N) ratio of 5.89 % were considered and analyzed in this research. In addition, the methane potential was determined and obtained using gas detector. The results shown that the methane (CH4) content in fish waste was 50.12 % which was the potential feedstock of fish waste for biogas production. Nevertheless, the VS of fish waste was high which was good for this feedstock to be easily digested as the sign of producing biogas and demonstrates 99.9985% of performance rate. Finally, the FW had a lower C/N ratio compared to other biogas production waste. Future work needs to consider co-digestion with higher C/N ratio feedstocks.\",\"PeriodicalId\":14118,\"journal\":{\"name\":\"International Journal of Low-carbon Technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Low-carbon Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/ijlct/ctac135\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low-carbon Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/ijlct/ctac135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

鱼类废物是可生物降解的废物,但仍未得到充分利用,对环境造成问题,因为现有的处理技术造成健康风险和环境污染。FW具有生产沼气的巨大潜力,可以减少对化石燃料的依赖,因为它含有易于生物降解的有机物质。本研究对鱼废的理化分析进行了考虑和分析,其中水分含量(MC)为61.78%,挥发性固形物(VS)为93.94%,总固形物(TS)为38.21%,灰分含量(AC)为0.52%,总有机碳(TOC)为54.2%,总凯氏定氮(TKN)为9.2%,碳氮比(C/N)为5.89%。此外,利用气体检测仪测定并得到了甲烷电位。结果表明,鱼废中甲烷(CH4)含量为50.12%,是鱼废生产沼气的潜在原料。然而,鱼粪的VS高,有利于该原料易于消化,作为产气的标志,性能率达到99.9985%。最后,与其他产气废弃物相比,FW具有较低的C/N比。未来的工作需要考虑与更高碳氮比的原料共消化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization and Analysis of Fish Waste as Feedstock for Biogas Production
Fish waste (FW) is biodegradable waste that remains underutilized and causes a problem to the environment since the existing disposal techniques result in health risks and environmental pollution. FW has significant potential for producing biogas that decrease the reliance on fossil fuels because it contains easily biodegradable organic matter. The physicochemical analysis of the fish waste such as moisture content (MC) of 61.78 %, volatile solids (VS) of 93.94 %, total solids (TS) of 38.21 %, ash content (AC) of 0.52%, total organic carbon (TOC) of 54.2%, total kjeldahl nitrogen (TKN) of 9.2% and carbon to nitrogen (C/N) ratio of 5.89 % were considered and analyzed in this research. In addition, the methane potential was determined and obtained using gas detector. The results shown that the methane (CH4) content in fish waste was 50.12 % which was the potential feedstock of fish waste for biogas production. Nevertheless, the VS of fish waste was high which was good for this feedstock to be easily digested as the sign of producing biogas and demonstrates 99.9985% of performance rate. Finally, the FW had a lower C/N ratio compared to other biogas production waste. Future work needs to consider co-digestion with higher C/N ratio feedstocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
4.30%
发文量
106
审稿时长
27 weeks
期刊介绍: The International Journal of Low-Carbon Technologies is a quarterly publication concerned with the challenge of climate change and its effects on the built environment and sustainability. The Journal publishes original, quality research papers on issues of climate change, sustainable development and the built environment related to architecture, building services engineering, civil engineering, building engineering, urban design and other disciplines. It features in-depth articles, technical notes, review papers, book reviews and special issues devoted to international conferences. The journal encourages submissions related to interdisciplinary research in the built environment. The journal is available in paper and electronic formats. All articles are peer-reviewed by leading experts in the field.
期刊最新文献
Analysis of thermoelectric effect of wet spun graphene fiber composites A simulation study on the bias and wavelength dependence of luminescent coupling in top-limited multi-junction solar cells Dynamo script and a BIM-based process for measuring embodied carbon in buildings during the design phase Asymmetric time-varying dependence and variable structure dependence measurement and analysis of EUA and CER The net-zero and sustainability potential of SCC development, production and flowability in concrete structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1