Yanmin Wang, Yuansong Xiao, Xuelian Wu, Tingxi Li, Yong Ma
{"title":"用于高性能超级电容器电极的羧基化多壁碳纳米管/聚苯胺复合材料","authors":"Yanmin Wang, Yuansong Xiao, Xuelian Wu, Tingxi Li, Yong Ma","doi":"10.1080/09243046.2022.2144123","DOIUrl":null,"url":null,"abstract":"Multi-walled carbon nanotube (MWCNT)/polyaniline (PANI) composite and carboxylated multi-walled carbon nanotube (MWCNT-COOH)/PANI composites are fabricated via in situ chemical oxidative polymerization method. The crystallinity, chemical structure and morphology of the composites are investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and field-emission scanning electron microscopy (FESEM), respectively. Based on the different morphology, the formation mechanism of the composites is proposed and the influence of the morphology on the electrochemical performance is predicted. The electrochemical properties of the composites are evaluated by galvanostatic charge/discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The MWCNT-COOH/PANI composite electrode shows higher specific capacitance than that of the MWCNT/PANI composite, as can be ascribed to the interpenetrating network structure of the MWCNT-COOH/PANI composite and the co-doping of DBSA and MWCNT-COOH. The MWCNT-COOH/PANI composite with 15% MWCNT-COOH presents the best electrochemical performance owing to the synergistic and comprehensive effect of the components. Using functionalized MWCNT provides an efficient approach to prepare high-performance composite materials for electrical energy storage fields.","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":"32 1","pages":"731 - 748"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Carboxylated multi-walled carbon nanotube/polyaniline composites for high-performance supercapacitor electrodes\",\"authors\":\"Yanmin Wang, Yuansong Xiao, Xuelian Wu, Tingxi Li, Yong Ma\",\"doi\":\"10.1080/09243046.2022.2144123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-walled carbon nanotube (MWCNT)/polyaniline (PANI) composite and carboxylated multi-walled carbon nanotube (MWCNT-COOH)/PANI composites are fabricated via in situ chemical oxidative polymerization method. The crystallinity, chemical structure and morphology of the composites are investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and field-emission scanning electron microscopy (FESEM), respectively. Based on the different morphology, the formation mechanism of the composites is proposed and the influence of the morphology on the electrochemical performance is predicted. The electrochemical properties of the composites are evaluated by galvanostatic charge/discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The MWCNT-COOH/PANI composite electrode shows higher specific capacitance than that of the MWCNT/PANI composite, as can be ascribed to the interpenetrating network structure of the MWCNT-COOH/PANI composite and the co-doping of DBSA and MWCNT-COOH. The MWCNT-COOH/PANI composite with 15% MWCNT-COOH presents the best electrochemical performance owing to the synergistic and comprehensive effect of the components. Using functionalized MWCNT provides an efficient approach to prepare high-performance composite materials for electrical energy storage fields.\",\"PeriodicalId\":7291,\"journal\":{\"name\":\"Advanced Composite Materials\",\"volume\":\"32 1\",\"pages\":\"731 - 748\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09243046.2022.2144123\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09243046.2022.2144123","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Carboxylated multi-walled carbon nanotube/polyaniline composites for high-performance supercapacitor electrodes
Multi-walled carbon nanotube (MWCNT)/polyaniline (PANI) composite and carboxylated multi-walled carbon nanotube (MWCNT-COOH)/PANI composites are fabricated via in situ chemical oxidative polymerization method. The crystallinity, chemical structure and morphology of the composites are investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and field-emission scanning electron microscopy (FESEM), respectively. Based on the different morphology, the formation mechanism of the composites is proposed and the influence of the morphology on the electrochemical performance is predicted. The electrochemical properties of the composites are evaluated by galvanostatic charge/discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The MWCNT-COOH/PANI composite electrode shows higher specific capacitance than that of the MWCNT/PANI composite, as can be ascribed to the interpenetrating network structure of the MWCNT-COOH/PANI composite and the co-doping of DBSA and MWCNT-COOH. The MWCNT-COOH/PANI composite with 15% MWCNT-COOH presents the best electrochemical performance owing to the synergistic and comprehensive effect of the components. Using functionalized MWCNT provides an efficient approach to prepare high-performance composite materials for electrical energy storage fields.
期刊介绍:
"Advanced Composite Materials (ACM), a bi-monthly publication of the Japan Society for Composite Materials and the Korean Society for Composite Materials, provides an international forum for researchers, manufacturers and designers who are working in the field of composite materials and their structures. Issues contain articles on all aspects of current scientific and technological progress in this interdisciplinary field. The topics of interest are physical, chemical, mechanical and other properties of advanced composites as well as their constituent materials; experimental and theoretical studies relating microscopic to macroscopic behavior; testing and evaluation with emphasis on environmental effects and reliability; novel techniques of fabricating various types of composites and of forming structural components utilizing these materials; design and analysis for specific applications.
Advanced Composite Materials publishes refereed original research papers, review papers, technical papers and short notes as well as some translated papers originally published in the Journal of the Japan Society for Composite Materials. Issues also contain news items such as information on new materials and their processing."