启动树突细胞介导的抗癌免疫反应的基于生物材料的策略

IF 16.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY International Materials Reviews Pub Date : 2020-03-18 DOI:10.1080/09506608.2020.1735117
W. Park, Kwang Hoon Song, Jaesung Lim, Chun Gwon Park, Junsang Doh, D. Han
{"title":"启动树突细胞介导的抗癌免疫反应的基于生物材料的策略","authors":"W. Park, Kwang Hoon Song, Jaesung Lim, Chun Gwon Park, Junsang Doh, D. Han","doi":"10.1080/09506608.2020.1735117","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cancer immunotherapy has been extremely successful in curing patients over the last decade. Immune checkpoint blockades (ICBs) that unleash the brakes in T-cells to promote cytotoxicity against cancer cells are the most successful forms of cancer immunotherapy, yet therapeutic efficacy needs to be improved as only a fraction of patients responds. Dendritic cells (DCs) are immune cells that prime immune responses by collecting information in tumour tissues, and carrying that information to T-cells, thus delivering proper information to DCs is essential. Biomaterial-based approaches can be powerful tools for this purpose, as biomaterials allow us to deliver a variety of immunotherapeutic agents at the right time and place. Herein, we review the key concepts of cancer immunotherapy; discuss the principles for designing biomaterials to deliver immunomodulatory molecules; and outline biomaterial-based strategies to prime anti-cancer immune responses. Specifically, we focus on two widely used forms of biomaterials, multifunctional nanoparticles and biocompatible scaffolds.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"65 1","pages":"445 - 462"},"PeriodicalIF":16.8000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2020.1735117","citationCount":"13","resultStr":"{\"title\":\"Biomaterial-based strategies to prime dendritic cell-mediated anti-cancer immune responses\",\"authors\":\"W. Park, Kwang Hoon Song, Jaesung Lim, Chun Gwon Park, Junsang Doh, D. Han\",\"doi\":\"10.1080/09506608.2020.1735117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Cancer immunotherapy has been extremely successful in curing patients over the last decade. Immune checkpoint blockades (ICBs) that unleash the brakes in T-cells to promote cytotoxicity against cancer cells are the most successful forms of cancer immunotherapy, yet therapeutic efficacy needs to be improved as only a fraction of patients responds. Dendritic cells (DCs) are immune cells that prime immune responses by collecting information in tumour tissues, and carrying that information to T-cells, thus delivering proper information to DCs is essential. Biomaterial-based approaches can be powerful tools for this purpose, as biomaterials allow us to deliver a variety of immunotherapeutic agents at the right time and place. Herein, we review the key concepts of cancer immunotherapy; discuss the principles for designing biomaterials to deliver immunomodulatory molecules; and outline biomaterial-based strategies to prime anti-cancer immune responses. Specifically, we focus on two widely used forms of biomaterials, multifunctional nanoparticles and biocompatible scaffolds.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"65 1\",\"pages\":\"445 - 462\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09506608.2020.1735117\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2020.1735117\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2020.1735117","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

摘要

在过去的十年中,癌症免疫疗法在治疗患者方面取得了极大的成功。免疫检查点阻断(ICBs)释放t细胞的刹车,促进对癌细胞的细胞毒性,是最成功的癌症免疫治疗形式,但治疗效果需要提高,因为只有一小部分患者有反应。树突状细胞(dc)是一种免疫细胞,它通过收集肿瘤组织中的信息,并将这些信息传递给t细胞,从而引发免疫反应,因此向树突状细胞传递适当的信息是必不可少的。基于生物材料的方法可以成为实现这一目标的有力工具,因为生物材料允许我们在适当的时间和地点提供各种免疫治疗剂。在此,我们回顾了癌症免疫治疗的关键概念;探讨免疫调节分子生物材料的设计原理并概述基于生物材料的策略,以启动抗癌免疫反应。具体来说,我们专注于两种广泛使用的生物材料,多功能纳米颗粒和生物相容性支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomaterial-based strategies to prime dendritic cell-mediated anti-cancer immune responses
ABSTRACT Cancer immunotherapy has been extremely successful in curing patients over the last decade. Immune checkpoint blockades (ICBs) that unleash the brakes in T-cells to promote cytotoxicity against cancer cells are the most successful forms of cancer immunotherapy, yet therapeutic efficacy needs to be improved as only a fraction of patients responds. Dendritic cells (DCs) are immune cells that prime immune responses by collecting information in tumour tissues, and carrying that information to T-cells, thus delivering proper information to DCs is essential. Biomaterial-based approaches can be powerful tools for this purpose, as biomaterials allow us to deliver a variety of immunotherapeutic agents at the right time and place. Herein, we review the key concepts of cancer immunotherapy; discuss the principles for designing biomaterials to deliver immunomodulatory molecules; and outline biomaterial-based strategies to prime anti-cancer immune responses. Specifically, we focus on two widely used forms of biomaterials, multifunctional nanoparticles and biocompatible scaffolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Materials Reviews
International Materials Reviews 工程技术-材料科学:综合
CiteScore
28.50
自引率
0.00%
发文量
21
审稿时长
6 months
期刊介绍: International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content. Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information. Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.
期刊最新文献
Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: a review Feedstock preparation, microstructures and mechanical properties for laser-based additive manufacturing of steel matrix composites Statistically equivalent representative volume elements (SERVE) for material behaviour analysis and multiscale modelling Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance Glass-contact refractory of the nuclear waste vitrification melters in the United States: a review of corrosion data and melter life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1