用机器学习加速仿生联锁结构的优化设计

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Mechanica Solida Sinica Pub Date : 2023-08-23 DOI:10.1007/s10338-023-00420-0
Zhongqiu Ding, Hong Xiao, Yugang Duan, Ben Wang
{"title":"用机器学习加速仿生联锁结构的优化设计","authors":"Zhongqiu Ding,&nbsp;Hong Xiao,&nbsp;Yugang Duan,&nbsp;Ben Wang","doi":"10.1007/s10338-023-00420-0","DOIUrl":null,"url":null,"abstract":"<div><p>Structural connections between components are often weak areas in engineering applications. In nature, many biological materials with remarkable mechanical performance possess flexible and creative sutures. In this work, we propose a novel bio-inspired interlocking tab considering both the geometry of the tab head and neck, and demonstrate a new approach to optimize the bio-inspired interlocking structures based on machine learning. Artificial neural networks for different optimization objectives are developed and trained using a database of thousands of interlocking structures generated through finite element analysis. Results show that the proposed method is able to achieve accurate prediction of the mechanical response of any given interlocking tab. The optimized designs with different optimization objectives, such as strength, stiffness, and toughness, are obtained efficiently and precisely. The optimum design predicted by machine learning is approximately 7.98 times stronger and 2.98 times tougher than the best design in the training set, which are validated through additive manufacturing and experimental testing. The machine learning-based optimization approach developed here can aid in the exploration of the intricate mechanism behind biological materials and the discovery of new material designs boasting orders of magnitude increase in computational efficacy over conventional methods.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerating Optimization Design of Bio-inspired Interlocking Structures with Machine Learning\",\"authors\":\"Zhongqiu Ding,&nbsp;Hong Xiao,&nbsp;Yugang Duan,&nbsp;Ben Wang\",\"doi\":\"10.1007/s10338-023-00420-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structural connections between components are often weak areas in engineering applications. In nature, many biological materials with remarkable mechanical performance possess flexible and creative sutures. In this work, we propose a novel bio-inspired interlocking tab considering both the geometry of the tab head and neck, and demonstrate a new approach to optimize the bio-inspired interlocking structures based on machine learning. Artificial neural networks for different optimization objectives are developed and trained using a database of thousands of interlocking structures generated through finite element analysis. Results show that the proposed method is able to achieve accurate prediction of the mechanical response of any given interlocking tab. The optimized designs with different optimization objectives, such as strength, stiffness, and toughness, are obtained efficiently and precisely. The optimum design predicted by machine learning is approximately 7.98 times stronger and 2.98 times tougher than the best design in the training set, which are validated through additive manufacturing and experimental testing. The machine learning-based optimization approach developed here can aid in the exploration of the intricate mechanism behind biological materials and the discovery of new material designs boasting orders of magnitude increase in computational efficacy over conventional methods.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-023-00420-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00420-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

构件之间的结构连接往往是工程应用中的薄弱环节。在自然界中,许多具有卓越力学性能的生物材料都具有灵活和创造性的缝合线。在这项工作中,我们提出了一种新型的仿生联锁标签,同时考虑了标签头部和颈部的几何形状,并展示了一种基于机器学习优化仿生联锁结构的新方法。针对不同的优化目标开发了人工神经网络,并使用通过有限元分析生成的数千个互锁结构数据库进行训练。结果表明,所提出的方法能够准确预测任意给定联锁板的力学响应。以不同的优化目标,如强度、刚度和韧性,高效、精确地得到优化设计。通过增材制造和实验测试验证,机器学习预测的最佳设计比训练集中的最佳设计强度约为7.98倍,强度约为2.98倍。这里开发的基于机器学习的优化方法可以帮助探索生物材料背后的复杂机制,并发现比传统方法计算效率提高数量级的新材料设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Optimization Design of Bio-inspired Interlocking Structures with Machine Learning

Structural connections between components are often weak areas in engineering applications. In nature, many biological materials with remarkable mechanical performance possess flexible and creative sutures. In this work, we propose a novel bio-inspired interlocking tab considering both the geometry of the tab head and neck, and demonstrate a new approach to optimize the bio-inspired interlocking structures based on machine learning. Artificial neural networks for different optimization objectives are developed and trained using a database of thousands of interlocking structures generated through finite element analysis. Results show that the proposed method is able to achieve accurate prediction of the mechanical response of any given interlocking tab. The optimized designs with different optimization objectives, such as strength, stiffness, and toughness, are obtained efficiently and precisely. The optimum design predicted by machine learning is approximately 7.98 times stronger and 2.98 times tougher than the best design in the training set, which are validated through additive manufacturing and experimental testing. The machine learning-based optimization approach developed here can aid in the exploration of the intricate mechanism behind biological materials and the discovery of new material designs boasting orders of magnitude increase in computational efficacy over conventional methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
期刊最新文献
Coupling Effects and Resonant Characteristics of Rotating Composite Thin-Walled Beams in Hygrothermal Environments Nonlinear Bending of FG-CNTR Curved Nanobeams in Thermal Environments Coupled Solutions for Two-Dimensional Decagonal Piezoelectric Quasicrystals with Cracks Deep-Learning-Coupled Numerical Optimization Method for Designing Geometric Structure and Insertion-Withdrawal Force of Press-Fit Connector Size-Dependent Analysis of Strain Energy Release Rate of Buckling Delamination Based on the Modified Couple Stress Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1