激光雷达与多波段图像数据融合获得的浅水测深图置信度测量

遥感学报 Pub Date : 2021-04-28 DOI:10.34133/2021/9841804
Z. Lee, M. Shangguan, Rodrigo A. Garcia, Wendian Lai, Xiaomei Lu, Junwei Wang, Xiaolei Yan
{"title":"激光雷达与多波段图像数据融合获得的浅水测深图置信度测量","authors":"Z. Lee, M. Shangguan, Rodrigo A. Garcia, Wendian Lai, Xiaomei Lu, Junwei Wang, Xiaolei Yan","doi":"10.34133/2021/9841804","DOIUrl":null,"url":null,"abstract":"With the advancement of Lidar technology, bottom depth (H) of optically shallow waters (OSW) can be measured accurately with an airborne or space-borne Lidar system (HLidar hereafter), but this data product consists of a line format, rather than the desired charts or maps, particularly when the Lidar system is on a satellite. Meanwhile, radiometric measurements frommultiband imagers can also be used to infer H (H imager hereafter) of OSW with variable accuracy, though a map of bottom depth can be obtained. It is logical and advantageous to use the two data sources from collocated measurements to generate a more accurate bathymetry map of OSW, where usually image-specific empirical algorithms are developed and applied. Here, after an overview of both the empirical and semianalytical algorithms for the estimation of H from multiband imagers, we emphasize that the uncertainty of Himager varies spatially, although it is straightforward to draw regressions between HLidar and radiometric data for the generation of Himager. Further, we present a prototype system to map the confidence of Himager pixel-wise, which has been lacking until today in the practices of passive remote sensing of bathymetry. We advocate the generation of a confidence measure in parallel with H imager, which is important and urgent for broad user communities.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":"2021 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Confidence Measure of the Shallow-Water Bathymetry Map Obtained through the Fusion of Lidar and Multiband Image Data\",\"authors\":\"Z. Lee, M. Shangguan, Rodrigo A. Garcia, Wendian Lai, Xiaomei Lu, Junwei Wang, Xiaolei Yan\",\"doi\":\"10.34133/2021/9841804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of Lidar technology, bottom depth (H) of optically shallow waters (OSW) can be measured accurately with an airborne or space-borne Lidar system (HLidar hereafter), but this data product consists of a line format, rather than the desired charts or maps, particularly when the Lidar system is on a satellite. Meanwhile, radiometric measurements frommultiband imagers can also be used to infer H (H imager hereafter) of OSW with variable accuracy, though a map of bottom depth can be obtained. It is logical and advantageous to use the two data sources from collocated measurements to generate a more accurate bathymetry map of OSW, where usually image-specific empirical algorithms are developed and applied. Here, after an overview of both the empirical and semianalytical algorithms for the estimation of H from multiband imagers, we emphasize that the uncertainty of Himager varies spatially, although it is straightforward to draw regressions between HLidar and radiometric data for the generation of Himager. Further, we present a prototype system to map the confidence of Himager pixel-wise, which has been lacking until today in the practices of passive remote sensing of bathymetry. We advocate the generation of a confidence measure in parallel with H imager, which is important and urgent for broad user communities.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\"2021 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/9841804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2021/9841804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

随着激光雷达技术的进步,光学浅水(OSW)的底部深度(H)可以用机载或星载激光雷达系统(以下简称HLidar)精确测量,但该数据产品由线格式组成,而不是所需的图表或地图,特别是当激光雷达系统在卫星上时。同时,通过多波段成像仪的辐射测量也可以以不同的精度推断出OSW的H(以下简称H成像仪),尽管可以获得底部深度图。使用来自同时测量的两个数据源来生成更准确的OSW测深图是合乎逻辑的,也是有利的,通常会开发和应用特定于图像的经验算法。在这里,在概述了从多波段成像仪估计H的经验和半解析算法之后,我们强调Himager的不确定性在空间上是不同的,尽管在HLidar和辐射数据之间绘制Himager的回归是很简单的。此外,我们提出了一个原型系统来绘制Himager的像素置信度,这在被动遥感测深实践中一直缺乏,直到今天。我们提倡与H成像仪并行生成置信度度量,这对于广泛的用户群体来说是重要和紧迫的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Confidence Measure of the Shallow-Water Bathymetry Map Obtained through the Fusion of Lidar and Multiband Image Data
With the advancement of Lidar technology, bottom depth (H) of optically shallow waters (OSW) can be measured accurately with an airborne or space-borne Lidar system (HLidar hereafter), but this data product consists of a line format, rather than the desired charts or maps, particularly when the Lidar system is on a satellite. Meanwhile, radiometric measurements frommultiband imagers can also be used to infer H (H imager hereafter) of OSW with variable accuracy, though a map of bottom depth can be obtained. It is logical and advantageous to use the two data sources from collocated measurements to generate a more accurate bathymetry map of OSW, where usually image-specific empirical algorithms are developed and applied. Here, after an overview of both the empirical and semianalytical algorithms for the estimation of H from multiband imagers, we emphasize that the uncertainty of Himager varies spatially, although it is straightforward to draw regressions between HLidar and radiometric data for the generation of Himager. Further, we present a prototype system to map the confidence of Himager pixel-wise, which has been lacking until today in the practices of passive remote sensing of bathymetry. We advocate the generation of a confidence measure in parallel with H imager, which is important and urgent for broad user communities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
遥感学报
遥感学报 Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
期刊最新文献
Combining solar-induced chlorophyll fluorescence and optical vegetation indices to better understand plant phenological responses to global change Simulating potential tree height for beech-maple-birch forests in northeastern United States on Google Earth Engine Globe230k: A benchmark dense-pixel annotation dataset for global land cover mapping Urban renewal mapping: A case study in Beijing from 2000 to 2020 Improved fine-scale tropical forest cover mapping for Southeast Asia using Planet-NICFI and Sentinel-1 imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1