Andrés Felipe Hernández Marulanda, Leidy Johana Gaviria
{"title":"用边界元法计算纳米增强材料线性弹性的Navier方程的解。","authors":"Andrés Felipe Hernández Marulanda, Leidy Johana Gaviria","doi":"10.21500/20275846.4853","DOIUrl":null,"url":null,"abstract":"In this paper, the study of linear elasticity is proposed in a nano reinforced composite material subjected to a constant external force in order to be used in the manufacture of lower limb prostheses, for which a computational algorithm was developed that solves the equation of linear elasticity (Navier equation), using the boundary element method and radial base functions. \nIt was determined if the use of an algorithm can predict the change in a two-dimensional geometry at the level of deformations, displacements and stresses in a composite material reinforced with carbon nanotubes used in the manufacture of lower limb prostheses and demonstrate compliance with the desired requirements when subjected to constant force. Therefore, with the implementation of the algorithm and the analysis of the information obtained, the selection process of a nano-reinforced composite material for use in the development of lower limb prostheses is supported when subjected to constant force. According to the algorithm developed and the results found, the boundary element method allows the simulation of the mechanical behavior of a composite material (A36 steel, at carbon nanotube concentrations of 1%, 2%, 3%)","PeriodicalId":30271,"journal":{"name":"Ingenierias USBMed","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solución de la ecuación de Navier para el cálculo de elasticidad lineal en materiales nanoreforzados utilizando el método de elementos de frontera.\",\"authors\":\"Andrés Felipe Hernández Marulanda, Leidy Johana Gaviria\",\"doi\":\"10.21500/20275846.4853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the study of linear elasticity is proposed in a nano reinforced composite material subjected to a constant external force in order to be used in the manufacture of lower limb prostheses, for which a computational algorithm was developed that solves the equation of linear elasticity (Navier equation), using the boundary element method and radial base functions. \\nIt was determined if the use of an algorithm can predict the change in a two-dimensional geometry at the level of deformations, displacements and stresses in a composite material reinforced with carbon nanotubes used in the manufacture of lower limb prostheses and demonstrate compliance with the desired requirements when subjected to constant force. Therefore, with the implementation of the algorithm and the analysis of the information obtained, the selection process of a nano-reinforced composite material for use in the development of lower limb prostheses is supported when subjected to constant force. According to the algorithm developed and the results found, the boundary element method allows the simulation of the mechanical behavior of a composite material (A36 steel, at carbon nanotube concentrations of 1%, 2%, 3%)\",\"PeriodicalId\":30271,\"journal\":{\"name\":\"Ingenierias USBMed\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ingenierias USBMed\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21500/20275846.4853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenierias USBMed","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21500/20275846.4853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solución de la ecuación de Navier para el cálculo de elasticidad lineal en materiales nanoreforzados utilizando el método de elementos de frontera.
In this paper, the study of linear elasticity is proposed in a nano reinforced composite material subjected to a constant external force in order to be used in the manufacture of lower limb prostheses, for which a computational algorithm was developed that solves the equation of linear elasticity (Navier equation), using the boundary element method and radial base functions.
It was determined if the use of an algorithm can predict the change in a two-dimensional geometry at the level of deformations, displacements and stresses in a composite material reinforced with carbon nanotubes used in the manufacture of lower limb prostheses and demonstrate compliance with the desired requirements when subjected to constant force. Therefore, with the implementation of the algorithm and the analysis of the information obtained, the selection process of a nano-reinforced composite material for use in the development of lower limb prostheses is supported when subjected to constant force. According to the algorithm developed and the results found, the boundary element method allows the simulation of the mechanical behavior of a composite material (A36 steel, at carbon nanotube concentrations of 1%, 2%, 3%)