用于风力叶片应用的可灌注热塑性树脂夹层结构以及粗布对面板-芯部界面脱胶的影响

IF 3.5 3区 材料科学 Q1 ENGINEERING, MECHANICAL Journal of Sandwich Structures & Materials Pub Date : 2022-09-06 DOI:10.1177/10996362221125876
Zachariah Arwood, Stephen Young, D. Penumadu
{"title":"用于风力叶片应用的可灌注热塑性树脂夹层结构以及粗布对面板-芯部界面脱胶的影响","authors":"Zachariah Arwood, Stephen Young, D. Penumadu","doi":"10.1177/10996362221125876","DOIUrl":null,"url":null,"abstract":"Infusible thermoplastic Elium® family of resins from Arkema have garnered much attention in recent years as a possible replacement for thermoset resins in laminate and sandwich composite manufacturing for wind blade applications due to its ease of recyclability and the ability to utilize existing manufacturing processes without imposing complicated variations. However, physical and mechanical properties of the proposed Elium® based thermoplastic composites must be comparable to existing epoxy (thermoset) based composites using manufacturing processes relevant for large wind turbine blades. A 13-meter-long demonstration blade was manufactured for that purpose and sandwich samples were obtained from that project for a detailed study. This paper details three-point flexural properties of unidirectional E-glass fiber reinforced acrylic and epoxy based sandwich panels with identical balsa wood core materials. In addition, to evaluate the relative merit considering debond failure mode, the interfacial critical strain energy release rate, predominantly in mode-1, was compared via single cantilever beam testing. In sandwich composites constructed with balsa wood core material, resin uptake by the balsa core is traditionally impeded via the insertion of a scrim material at the facesheet to core interface. Results revealed that inclusion of scrim mesh layer at the facesheet to core interface reduced flexural properties and strain energy release rates in panels infused with acrylic resin but did not significantly reduce these properties in epoxy infused facesheets.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"25 1","pages":"128 - 143"},"PeriodicalIF":3.5000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infusible thermoplastic resin based sandwich structures for wind blade applications and the influence of scrim on facesheet to core interface debonding\",\"authors\":\"Zachariah Arwood, Stephen Young, D. Penumadu\",\"doi\":\"10.1177/10996362221125876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infusible thermoplastic Elium® family of resins from Arkema have garnered much attention in recent years as a possible replacement for thermoset resins in laminate and sandwich composite manufacturing for wind blade applications due to its ease of recyclability and the ability to utilize existing manufacturing processes without imposing complicated variations. However, physical and mechanical properties of the proposed Elium® based thermoplastic composites must be comparable to existing epoxy (thermoset) based composites using manufacturing processes relevant for large wind turbine blades. A 13-meter-long demonstration blade was manufactured for that purpose and sandwich samples were obtained from that project for a detailed study. This paper details three-point flexural properties of unidirectional E-glass fiber reinforced acrylic and epoxy based sandwich panels with identical balsa wood core materials. In addition, to evaluate the relative merit considering debond failure mode, the interfacial critical strain energy release rate, predominantly in mode-1, was compared via single cantilever beam testing. In sandwich composites constructed with balsa wood core material, resin uptake by the balsa core is traditionally impeded via the insertion of a scrim material at the facesheet to core interface. Results revealed that inclusion of scrim mesh layer at the facesheet to core interface reduced flexural properties and strain energy release rates in panels infused with acrylic resin but did not significantly reduce these properties in epoxy infused facesheets.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":\"25 1\",\"pages\":\"128 - 143\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362221125876\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362221125876","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,来自Arkema的可灌注热塑性Elium®树脂系列因其易于回收和能够利用现有制造工艺而不产生复杂变化,作为风叶应用层压板和夹层复合材料制造中热固性树脂的可能替代品,受到了广泛关注。然而,使用与大型风力涡轮机叶片相关的制造工艺,拟议的Elium®基热塑性复合材料的物理和机械性能必须与现有的环氧(热固性)基复合材料相当。为此制造了一个13米长的演示叶片,并从该项目中获得了夹层样品进行详细研究。本文详细介绍了采用相同轻木芯材的单向E-玻璃纤维增强丙烯酸和环氧基夹芯板的三点弯曲性能。此外,为了评估考虑脱胶失效模式的相对优点,通过单悬臂梁测试比较了界面临界应变能释放率,主要是在模式-1下。在用轻木芯材料构建的夹层复合材料中,轻木芯的树脂吸收传统上通过在面板到芯的界面处插入粗布材料而受到阻碍。结果表明,在面板与芯体的界面处包含粗布网层降低了注入丙烯酸树脂的面板的弯曲性能和应变能释放率,但在注入环氧树脂的面板中没有显著降低这些性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infusible thermoplastic resin based sandwich structures for wind blade applications and the influence of scrim on facesheet to core interface debonding
Infusible thermoplastic Elium® family of resins from Arkema have garnered much attention in recent years as a possible replacement for thermoset resins in laminate and sandwich composite manufacturing for wind blade applications due to its ease of recyclability and the ability to utilize existing manufacturing processes without imposing complicated variations. However, physical and mechanical properties of the proposed Elium® based thermoplastic composites must be comparable to existing epoxy (thermoset) based composites using manufacturing processes relevant for large wind turbine blades. A 13-meter-long demonstration blade was manufactured for that purpose and sandwich samples were obtained from that project for a detailed study. This paper details three-point flexural properties of unidirectional E-glass fiber reinforced acrylic and epoxy based sandwich panels with identical balsa wood core materials. In addition, to evaluate the relative merit considering debond failure mode, the interfacial critical strain energy release rate, predominantly in mode-1, was compared via single cantilever beam testing. In sandwich composites constructed with balsa wood core material, resin uptake by the balsa core is traditionally impeded via the insertion of a scrim material at the facesheet to core interface. Results revealed that inclusion of scrim mesh layer at the facesheet to core interface reduced flexural properties and strain energy release rates in panels infused with acrylic resin but did not significantly reduce these properties in epoxy infused facesheets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sandwich Structures & Materials
Journal of Sandwich Structures & Materials 工程技术-材料科学:表征与测试
CiteScore
9.60
自引率
2.60%
发文量
49
审稿时长
7 months
期刊介绍: The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fundamental mechanical relations of open-cell metal foam composite materials with reticular porous structure Bond strength empirical-mathematical equation and optimization of Al1050/AISI304 bilayer sheets fabricated by cold roll bonding method Flexural and impact response of sandwich panels with Nomex honeycomb core and hybrid fiber composite skins Global buckling response of sandwich panels with additively manufactured lattice cores Numerical study on structured sandwich panels exposed to spherical air explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1