一个γ幂随机Lundqvist-Korf扩散过程:计算方面和模拟

E. Abdenbi, Nafidi Ahmed
{"title":"一个γ幂随机Lundqvist-Korf扩散过程:计算方面和模拟","authors":"E. Abdenbi, Nafidi Ahmed","doi":"10.2478/mjpaa-2022-0025","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce a new family of stochastic Lundqvist-Korf diffusion process, defined from a g-power of the Lundqvist-Korf diffusion process. First, we determine the probabilistic characteristics of the process, such as its analytic expression, the transition probability density function from the corresponding It ˆo stochastic differential equation and obtain the conditional and non-conditional mean functions. We then study the statistical inference in this process. The parameters of this process are estimated by using the maximum likelihood estimation method with discrete sampling, thus we obtain a nonlinear equation, which is achieved via the simulated annealing algorithm. Finally, the results of the paper are applied to simulated data.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"364 - 374"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A γ-power stochastic Lundqvist-Korf diffusion process: Computational aspects and simulation\",\"authors\":\"E. Abdenbi, Nafidi Ahmed\",\"doi\":\"10.2478/mjpaa-2022-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduce a new family of stochastic Lundqvist-Korf diffusion process, defined from a g-power of the Lundqvist-Korf diffusion process. First, we determine the probabilistic characteristics of the process, such as its analytic expression, the transition probability density function from the corresponding It ˆo stochastic differential equation and obtain the conditional and non-conditional mean functions. We then study the statistical inference in this process. The parameters of this process are estimated by using the maximum likelihood estimation method with discrete sampling, thus we obtain a nonlinear equation, which is achieved via the simulated annealing algorithm. Finally, the results of the paper are applied to simulated data.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"364 - 374\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

摘要在本文中,我们引入了一个新的随机Lundqvist-Korf扩散过程族,它是由Lundqvist-Korf扩散过程的g次幂定义的。首先,我们确定了该过程的概率特征,如它的解析表达式,从相应的Itõo随机微分方程中确定了转移概率密度函数,并获得了条件和非条件均值函数。然后我们研究这个过程中的统计推断。采用离散采样的最大似然估计方法对该过程的参数进行估计,从而得到一个非线性方程,该方程是通过模拟退火算法实现的。最后,将本文的结果应用于模拟数据中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A γ-power stochastic Lundqvist-Korf diffusion process: Computational aspects and simulation
Abstract In this paper, we introduce a new family of stochastic Lundqvist-Korf diffusion process, defined from a g-power of the Lundqvist-Korf diffusion process. First, we determine the probabilistic characteristics of the process, such as its analytic expression, the transition probability density function from the corresponding It ˆo stochastic differential equation and obtain the conditional and non-conditional mean functions. We then study the statistical inference in this process. The parameters of this process are estimated by using the maximum likelihood estimation method with discrete sampling, thus we obtain a nonlinear equation, which is achieved via the simulated annealing algorithm. Finally, the results of the paper are applied to simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
期刊最新文献
Volterra operator norms : a brief survey Negative Powers of Contractions Having a Strong AA+ Spectrum Sums and products of periodic functions The Maximum Locus of the Bloch Norm Mohamed Zarrabi 1964-2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1