{"title":"一种新型多尺度对准集合滤波器提高涡旋定位精度","authors":"Y. Ying, Jeffrey L. Anderson, Laurent Bertino","doi":"10.1175/mwr-d-22-0140.1","DOIUrl":null,"url":null,"abstract":"\nA multiscale alignment (MSA) ensemble filtering method was introduced by Ying to reduce nonlinear position errors effectively during data assimilation. The MSA method extends the traditional ensemble Kalman filter (EnKF) to update states from large to small scales sequentially, during which it leverages the displacement vectors derived from the large-scale analysis increments to reduce position errors at smaller scales through warping of the model grid. This study stress tests the MSA method in various scenarios using an idealized vortex model. We show that the MSA improves filter performance as number of scales (Ns) increases in the presence of nonlinear position errors. We tuned localization parameters for the cross-scale EnKF updates to find the best performance when assimilating an observation network. To further reduce the scale mismatch between observations and states, a new option called MSA-O is introduced to decompose observations into scale components during assimilation. Cycling DA experiments show that the MSA-O consistently outperforms the traditional EnKF at equal computational cost. A more challenging scenario for the MSA is identified when the large-scale background flow and the small-scale vortex are incoherent in terms of their errors, making the displacement vectors not effective in reducing vortex position errors. Observation availability for the small scales also limits the use of large Ns for the MSA. Potential remedies for these issues are discussed.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Vortex Position Accuracy with a New Multiscale Alignment Ensemble Filter\",\"authors\":\"Y. Ying, Jeffrey L. Anderson, Laurent Bertino\",\"doi\":\"10.1175/mwr-d-22-0140.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nA multiscale alignment (MSA) ensemble filtering method was introduced by Ying to reduce nonlinear position errors effectively during data assimilation. The MSA method extends the traditional ensemble Kalman filter (EnKF) to update states from large to small scales sequentially, during which it leverages the displacement vectors derived from the large-scale analysis increments to reduce position errors at smaller scales through warping of the model grid. This study stress tests the MSA method in various scenarios using an idealized vortex model. We show that the MSA improves filter performance as number of scales (Ns) increases in the presence of nonlinear position errors. We tuned localization parameters for the cross-scale EnKF updates to find the best performance when assimilating an observation network. To further reduce the scale mismatch between observations and states, a new option called MSA-O is introduced to decompose observations into scale components during assimilation. Cycling DA experiments show that the MSA-O consistently outperforms the traditional EnKF at equal computational cost. A more challenging scenario for the MSA is identified when the large-scale background flow and the small-scale vortex are incoherent in terms of their errors, making the displacement vectors not effective in reducing vortex position errors. Observation availability for the small scales also limits the use of large Ns for the MSA. Potential remedies for these issues are discussed.\",\"PeriodicalId\":18824,\"journal\":{\"name\":\"Monthly Weather Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Weather Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-22-0140.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-22-0140.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Improving Vortex Position Accuracy with a New Multiscale Alignment Ensemble Filter
A multiscale alignment (MSA) ensemble filtering method was introduced by Ying to reduce nonlinear position errors effectively during data assimilation. The MSA method extends the traditional ensemble Kalman filter (EnKF) to update states from large to small scales sequentially, during which it leverages the displacement vectors derived from the large-scale analysis increments to reduce position errors at smaller scales through warping of the model grid. This study stress tests the MSA method in various scenarios using an idealized vortex model. We show that the MSA improves filter performance as number of scales (Ns) increases in the presence of nonlinear position errors. We tuned localization parameters for the cross-scale EnKF updates to find the best performance when assimilating an observation network. To further reduce the scale mismatch between observations and states, a new option called MSA-O is introduced to decompose observations into scale components during assimilation. Cycling DA experiments show that the MSA-O consistently outperforms the traditional EnKF at equal computational cost. A more challenging scenario for the MSA is identified when the large-scale background flow and the small-scale vortex are incoherent in terms of their errors, making the displacement vectors not effective in reducing vortex position errors. Observation availability for the small scales also limits the use of large Ns for the MSA. Potential remedies for these issues are discussed.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.