Mariela Morveli-Espinoza, Juan Carlos Nieves, Cesar Augusto Tacla
{"title":"概率因果双极抽象论证:基于凭证网络的方法","authors":"Mariela Morveli-Espinoza, Juan Carlos Nieves, Cesar Augusto Tacla","doi":"10.1007/s10472-023-09851-4","DOIUrl":null,"url":null,"abstract":"<div><p>The Bipolar Argumentation Framework approach is an extension of the Abstract Argumentation Framework. A Bipolar Argumentation Framework considers a support interaction between arguments, besides the attack interaction. As in the Abstract Argumentation Framework, some researches consider that arguments have a degree of uncertainty, which impacts on the degree of uncertainty of the extensions obtained from a Bipolar Argumentation Framework under a semantics. In these approaches, both the uncertainty of the arguments and of the extensions are modeled by means of precise probability values. However, in many real application domains there is a need for aggregating probability values from different sources so it is not suitable to aggregate such probability values in a unique probability distribution. To tackle this challenge, we use credal networks theory for modelling the uncertainty of the degree of belief of arguments in a BAF. We also propose an algorithm for calculating the degree of uncertainty of the extensions inferred by a given argumentation semantics. Moreover, we introduce the idea of modelling the support relation as a causal relation. We formally show that the introduced approach is sound and complete w.r.t the credal networks theory.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"91 4","pages":"517 - 536"},"PeriodicalIF":1.2000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10472-023-09851-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Probabilistic causal bipolar abstract argumentation: an approach based on credal networks\",\"authors\":\"Mariela Morveli-Espinoza, Juan Carlos Nieves, Cesar Augusto Tacla\",\"doi\":\"10.1007/s10472-023-09851-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Bipolar Argumentation Framework approach is an extension of the Abstract Argumentation Framework. A Bipolar Argumentation Framework considers a support interaction between arguments, besides the attack interaction. As in the Abstract Argumentation Framework, some researches consider that arguments have a degree of uncertainty, which impacts on the degree of uncertainty of the extensions obtained from a Bipolar Argumentation Framework under a semantics. In these approaches, both the uncertainty of the arguments and of the extensions are modeled by means of precise probability values. However, in many real application domains there is a need for aggregating probability values from different sources so it is not suitable to aggregate such probability values in a unique probability distribution. To tackle this challenge, we use credal networks theory for modelling the uncertainty of the degree of belief of arguments in a BAF. We also propose an algorithm for calculating the degree of uncertainty of the extensions inferred by a given argumentation semantics. Moreover, we introduce the idea of modelling the support relation as a causal relation. We formally show that the introduced approach is sound and complete w.r.t the credal networks theory.</p></div>\",\"PeriodicalId\":7971,\"journal\":{\"name\":\"Annals of Mathematics and Artificial Intelligence\",\"volume\":\"91 4\",\"pages\":\"517 - 536\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10472-023-09851-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10472-023-09851-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-023-09851-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Probabilistic causal bipolar abstract argumentation: an approach based on credal networks
The Bipolar Argumentation Framework approach is an extension of the Abstract Argumentation Framework. A Bipolar Argumentation Framework considers a support interaction between arguments, besides the attack interaction. As in the Abstract Argumentation Framework, some researches consider that arguments have a degree of uncertainty, which impacts on the degree of uncertainty of the extensions obtained from a Bipolar Argumentation Framework under a semantics. In these approaches, both the uncertainty of the arguments and of the extensions are modeled by means of precise probability values. However, in many real application domains there is a need for aggregating probability values from different sources so it is not suitable to aggregate such probability values in a unique probability distribution. To tackle this challenge, we use credal networks theory for modelling the uncertainty of the degree of belief of arguments in a BAF. We also propose an algorithm for calculating the degree of uncertainty of the extensions inferred by a given argumentation semantics. Moreover, we introduce the idea of modelling the support relation as a causal relation. We formally show that the introduced approach is sound and complete w.r.t the credal networks theory.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.