{"title":"基于联合标记和句子感知的少镜头命名实体识别","authors":"Wen Wen, Yongbin Liu, Qiang Lin, Chunping Ouyang","doi":"10.1162/dint_a_00195","DOIUrl":null,"url":null,"abstract":"ABSTRACT Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks. Recently, few-shot models have been used for Named Entity Recognition (NER). Prototypical network shows high efficiency on few-shot NER. However, existing prototypical methods only consider the similarity of tokens in query sets and support sets and ignore the semantic similarity among the sentences which contain these entities. We present a novel model, Few-shot Named Entity Recognition with Joint Token and Sentence Awareness (JTSA), to address the issue. The sentence awareness is introduced to probe the semantic similarity among the sentences. The Token awareness is used to explore the similarity of the tokens. To further improve the robustness and results of the model, we adopt the joint learning scheme on the few-shot NER. Experimental results demonstrate that our model outperforms state-of-the-art models on two standard Few-shot NER datasets.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"767-785"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-shot Named Entity Recognition with Joint Token and Sentence Awareness\",\"authors\":\"Wen Wen, Yongbin Liu, Qiang Lin, Chunping Ouyang\",\"doi\":\"10.1162/dint_a_00195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks. Recently, few-shot models have been used for Named Entity Recognition (NER). Prototypical network shows high efficiency on few-shot NER. However, existing prototypical methods only consider the similarity of tokens in query sets and support sets and ignore the semantic similarity among the sentences which contain these entities. We present a novel model, Few-shot Named Entity Recognition with Joint Token and Sentence Awareness (JTSA), to address the issue. The sentence awareness is introduced to probe the semantic similarity among the sentences. The Token awareness is used to explore the similarity of the tokens. To further improve the robustness and results of the model, we adopt the joint learning scheme on the few-shot NER. Experimental results demonstrate that our model outperforms state-of-the-art models on two standard Few-shot NER datasets.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\"5 1\",\"pages\":\"767-785\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/dint_a_00195\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00195","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Few-shot Named Entity Recognition with Joint Token and Sentence Awareness
ABSTRACT Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks. Recently, few-shot models have been used for Named Entity Recognition (NER). Prototypical network shows high efficiency on few-shot NER. However, existing prototypical methods only consider the similarity of tokens in query sets and support sets and ignore the semantic similarity among the sentences which contain these entities. We present a novel model, Few-shot Named Entity Recognition with Joint Token and Sentence Awareness (JTSA), to address the issue. The sentence awareness is introduced to probe the semantic similarity among the sentences. The Token awareness is used to explore the similarity of the tokens. To further improve the robustness and results of the model, we adopt the joint learning scheme on the few-shot NER. Experimental results demonstrate that our model outperforms state-of-the-art models on two standard Few-shot NER datasets.